首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N 1s and O 1s scanned-energy mode photoelectron diffraction (PhD) has been used to investigate the local structure of a single enantiomer of deprotonated alanine, alaninate, NH2CH3CHCOO-, on Cu(1 1 0) in the (3 × 2) phase. The local site is found to be similar to that of glycinate on Cu(1 1 0), with the N atoms in near-atop sites and the O atoms sites consistent with bonding to single surface Cu atoms but substantially off-atop. Unlike the Cu(1 1 0)(3 × 2)pg-glycinate phase, however, in which the two molecular species per unit mesh are mirror images of one another in identical local sites, the intrinsic chirality of l-alaninate means that the two molecules per unit mesh of the (3 × 2) surface phase occupy slightly different local sites. However, an excellent fit to the PhD data can be achieved by a minor modification of the structure found in DFT calculations by R.B. Rankin and D.S. Sholl [Surf. Sci. 574 (2005) L1] in which the heights of the N and O atoms above the surface are reduced by approximately 0.1 Å. The resulting average N-Cu and O-Cu values are 2.02 and 1.98 Å, respectively, with an estimated precision of ±0.03 Å. These bondlengths are shorter than those obtained from DFT by 0.08 and 0.10 Å, respectively.  相似文献   

2.
In this work we have performed total-energy calculations on the geometric structure and adsorption properties of Cu(1 0 0) c(2 × 2)/N surface by using the density-functional theory and the projector-augmented wave method. It is concluded that nitrogen atom was adsorbed on a FFH site with a vertical distance of 0.2 Å towards from surface Cu layer. The bond length of the shortest Cu-N bonding is calculated to be 1.83 Å. Geometry optimization calculations exclude out the possibilities of adsorbate induced reconstruction mode suggested by Driver and Woodruff and the atop structural model. The calculated workfunction for this absorbate-adsorbent system is 4.63 eV which is quite close to that of a clean Cu(1 0 0) surface. The total-energy calculations showed that the average adsorption energy per nitrogen in the case of Cu(1 0 0) c(2 × 2)-N is about 4.88 eV with respect to an isolated N atom. The absorption of nitrogen on Cu(1 0 0) surface yields the hybridization between surface Cu atoms and N, and generates the localized surface states at −1.0 eV relative to Fermi energy EF. The stretch mode of the adsorbed nitrogen at FFH site is about 30.8 meV. The present study provides a strong criterion to account for the local surface geometry in Cu(1 0 0) c(2 × 2)/N surface.  相似文献   

3.
We have investigated the temperature dependence of angle resolved photoelectron spectroscopy for the lateral quantum well states (QWS) on the striped Cu(1 1 0)(2 × 1)O surface. For the striped surface with oxygen coverage of 0.25 ML, we have successfully observed two discrete levels along a perpendicular direction to the stripes in the surface Brillouin zone, which is generated by quantization of the Shockley surface state. We have found that the relative photoelectron intensity of the two discrete levels depends on the temperature. The photoelectron intensity tends to concentrate on the ground level of the QWS with decreasing temperature. Our investigation indicates that the electron population of each quantum well level depends on the temperature.  相似文献   

4.
We have performed an angle resolved photoemission spectroscopy with high energy and high momentum resolutions and have observed the k dependent energy dispersion curves of the striped Cu(1 1 0)(2 × 1)O surface. It is found that the Shockley surface state electron is confined in the clean surface along the perpendicular direction to the stripes and forms a quantum well state (QWS). It has also been clearly observed that an electron of Cu-O antibonding state is confined within the oxygen covered surface.  相似文献   

5.
Y. Cui 《Surface science》2009,603(20):3072-5472
The growth behavior of Ca on Si(0 0 1) has been studied with scanning tunneling microscopy and low energy electron diffraction. During the growth of the first atomic layer at elevated temperature, Ca induces several different ordered surface reconstructions. In order of ascending metal content, they are: a 2 × n (n = 3, 4, 5) phase that has limited long range order, a 2 × 6 striped phase, and a 1 × 3 phase. The 1 × 3 phase covers the entire surface at and beyond the point where Ca silicide island growth starts.  相似文献   

6.
We report on the precise location of Cl atoms chemisorbed on a Cu(0 0 1) surface and the interlayer relaxations of the metal surface. Previous studies have shown that chlorine dissociates on Cu(0 0 1) to form a c(2 × 2) chemisorbed layer with Cl atoms occupying four-fold hollow sites. A Cu-Cl interlayer spacing of 1.60 Å and a slightly expanded Cu-Cu first interlayer spacing of 1.85 Å (1.807 Å for bulk Cu) was determined by LEED. The resulting Cu-Cl bond length, 2.41 Å, is very similar to the SEXAFS value of 2.37 Å. Contradictory results were obtained by angle-resolved photoemission extended fine structure: while confirming the Cu-Cl interlayer spacing of 1.60 Å, no first Cu-Cu interlayer relaxation has been observed. On the other hand, a small corrugation of the second Cu layer was pointed out. We carried out a detailed structural determination of the Cu(0 0 1)-c(2 × 2)-Cl system using surface X-ray diffraction technique with synchrotron radiation. We find a Cu-Cl interlayer spacing of 1.584(5) Å and confirm the expansion of the first Cu-Cu interlayer, with an average spacing of 1.840(5) Å. In addition, we observe a small corrugation of the second Cu layer, with Cu atoms just below Cl atoms more tightly bound to the surface layer, and even a second Cu-Cu interlayer expansion.  相似文献   

7.
The adsorption of calcium (Ca) atoms on a Cu(0 0 1) surface has been studied by low-energy electron diffraction (LEED) at 130, 300 and 400 K. It is found that a (4 × 4) was the only LEED pattern appeared at 400 K while a quasi-hexagonal structure was formed in a wide range of submonolayer coverage at 130 K. At 300 K, the (4 × 4) LEED spots were broad and weak. The (4 × 4) structure formed at 400 K was determined by a tensor LEED I-V analysis. It is a new-type of surface alloys consisting of five substitutional Ca atoms, nine surface Cu atoms, and two atomic vacancies in the unit cell. In spite of a quite large size-difference between Ca (3.94 Å) and Cu (2.55 Å) atoms, all Ca atoms are located at the substitutional sites. Among surface alloys so far reported, the atomic size ratio between Cu and Ca in the (4 × 4), 1.54, is the largest. Optimized structural parameters reveal that large lateral displacements of surface Cu atoms, being enabled by the appearance of the vacancies, allow the formation of the (4 × 4) structure.  相似文献   

8.
T. Brandstetter 《Surface science》2009,603(24):3410-1029
The interplay between chemisorbed oxygen and deposited Ag on the Cu(1 1 0) surface has been studied by scanning tunneling microscopy (STM) and photoelectron emission microscopy (PEEM). The Cu-CuO stripe phase formed on the clean Cu(1 1 0) surface upon oxygen chemisorption at 660 K is partly dissolved by Ag deposition at 300 K. Upon annealing, however, a phase separation is observed, where the Cu-O compounds agglomerate into large CuO islands and the Ag is located in between. Also a strong preference for the Ag to attach to step bunches is observed. Especially on the fully (2×1)O reconstructed Cu(1 1 0) surface, all the deposited Ag is found at the step bunches giving rise to a contrast in PEEM.  相似文献   

9.
M. Çakmak  E. Mete 《Surface science》2006,600(18):3614-3618
The adsorption of Sr on the Si(0 0 1) surface with the semiantiphase dimer (2 × 2) reconstruction is studied, based upon the ab initio pseudopotential calculations. It is calculated that the semiantiphase dimer (2 × 2) reconstruction (2 dimers per unit cell) is more favorable than the (2 × 1) phase (1 dimer per unit cell) by an energy of about 0.24 eV/dimer. Considering the energetically more stable reconstruction, we have assumed four possible locations for 1/4 monolayer (ML) Sr adsorption on this surface: (i) bridge, (ii) cave, (iii) pedestal, and (iv) valley-bridge. We find that Sr adsorption on the valley-bridge site is energetically more favorable than all other cases studied here. Interestingly, one of the dimers becomes symmetric, but the other one is still asymmetric with the buckling angle reduced from 18° to 14°, when compared with the clean Si(0 0 1)-(2 × 2) surface. The calculated bond length between Sr and Si in the case of valley-bridge adsorption site is 3.05 Å, and in good agreement with other theoretical calculations. We also present and compare the electronic band structures for the clean and covered surfaces as well as the corresponding charge density plots.  相似文献   

10.
Using a combination of scanning tunneling microscopy (STM) and density functional theory calculations, we have studied the adsorption of tetracene on the Cu(1 1 0) (2 × 1)O substrate. At monolayer coverage the adsorbed molecules are in the flat-laying geometry with their long axis along the close-packed [0 0 1] direction of the substrate and a long-range ordered structure on the length scale up to 100 nm has been observed. DFT calculation results indicate a stronger interaction between tetracene molecules and Cu(1 1 0) substrate than Cu(1 1 0) (2 × 1)O substrate. The preferential adsorption sites have also been pointed out on both substrates. The observed wavelike structure is explained by the interdigitation of C-H bonds of adjacent molecules.  相似文献   

11.
The co-adsorption of CO and O on the unreconstructed (1 × 1) phase of Ir{1 0 0} was examined by low energy electron diffraction (LEED) and temperature programmed desorption (TPD). When CO is adsorbed at 188 K onto the Ir{1 0 0} surface precovered with 0.5 ML O, a mixed c(4 × 2)-(2O + CO) overlayer is formed. All CO is oxidised upon heating and desorbs as CO2 in three distinct stages at 230 K, 330 K and 430 K in a 2:1:2 ratio. The excess oxygen left on the surface after all CO has reacted forms an overlayer with a LEED pattern with p(2 × 10) periodicity. This overlayer consists of stripes with a local p(2 × 1)-O arrangement of oxygen atoms separated by stripes of uncovered Ir. When CO is adsorbed at 300 K onto the surface precovered with 0.5 ML O an apparent (2 × 2) LEED pattern is observed. LEED IV analysis reveals that this pattern is a superposition of diffraction patterns from islands of c(2 × 2)-CO and p(2  × 1)-O structures on the surface. Heating this co-adsorbed overlayer leads to the desorption of CO2 in two stages at 330 K and 430 K; the excess CO (0.1 ML) desorbs at 590 K.LEED IV structural analysis of the mixed c(4 × 2) O and CO overlayer shows that both the CO molecules and the O atoms occupy bridge sites. The O atoms show significant lateral displacements of 0.14 Å away from the CO molecules; the C-O bond is slightly expanded with respect to the gas phase (1.19 Å); the modifications of the Ir substrate with respect to the bulk-terminated surface are very small.  相似文献   

12.
We present a comprehensive picture of structural and electronic properties of the TiC(0 0 1)(1 × 1) surface. Our investigations are based on first-principles calculations within the local-density approximation of the density-functional theory. Good agreement has been observed between our calculation and experimental data for the atomic geometry of the surface. In particular, the calculated bond lengths between the first-layer C and the second-layer Ti (d1C-2Ti = 2.188 Å) and between the first-layer Ti and the second-layer C (d1Ti-2C = 2.031 Å) are in good agreement with the corresponding experimental values of 2.25 Å and 2.14 Å, respectively. We have also identified surface electronic states and provided clear support for previously available photoemission measurements. We have further calculated surface phonon modes at the zone centre and at the zone-edge point X using a linear response scheme based on the ab initio pseudopotential method. Our calculated surface phonon results are in excellent agreement with electron energy loss spectroscopy results.  相似文献   

13.
The electronic structure of the c(2 × 2)-Si/Cu(0 1 1) surface alloy has been investigated and compared to the structures seen in the three phases of the (√3 × √3)R30°Cu2Si/Cu(1 1 1) system, using LCAO-DFT. The weighted surface energy increase between the alloyed Cu(0 1 1) and Cu(1 1 1) surfaces is 126.7 meV/Si atom. This increase in energy for the (0 1 1) system when compared to the (1 1 1) system is assigned to the transition from a hexagonal to a rectangular local bonding environment for the Si ion cores, with the hexagonal environment being energetically more favorable. The Si 3s state is shown to interact covalently with the Cu 4s and 4p states whereas the Si 3p state, and to a lesser extent the Si 3d state, forms a mixture of covalent and metallic bonds with the Cu states. The Cu 4s and 4p states are shown to be altered by approximately the same amount by both the removal of Cu ion cores and the inclusion of Si ion cores during the alloying of the Cu(0 1 1) surface. However, the Cu 3d states in the surface and second layers of the alloy are shown to be more significantly altered during the alloying process by the removal of Cu ion cores from the surface layer rather than by the addition of Si ion cores. This is compared to the behavior of the Cu 3d states in the surface and second layers of the each phase of the (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloy and consequently the loss of Cu-Cu periodicity during alloying of the Cu(0 1 1) surface is conjectured as the driving force for changes to the Cu 3d states. The accompanying changes to the Cu 4s and 4p states in both the c(2 × 2)-Si/Cu(0 1 1) and (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloys are quantified and compared. The study concludes with a brief quantitative study of changes in the bond order of the Cu-Cu bonds during alloying of both Cu(0 1 1) and Cu(1 1 1) surfaces.  相似文献   

14.
Y. Hu 《Surface science》2006,600(3):762-769
We present a reflectance difference spectroscopy (RDS) study of para-sexiphenyl (p-6P) thin film growth on Cu(1 1 0) and Cu(1 1 0)-(2 × 1)O substrates. The RDS spectra show pronounced anisotropies for p-6P films formed on both substrates at room temperature, demonstrating that the molecules are uniaxially aligned within the films. Based on the RD spectra and the evolution of the optical transitions with p-6P coverage the growth mode on both substrates could be identified. From the dominating RDS feature, assigned to the lowest energy HOMO-LUMO transition, the orientation of the molecular chain can be determined. On Cu(1 1 0), the p-6P molecular chains align in the direction, i.e., along the Cu atomic rows, whereas on the Cu(1 1 0)-(2 × 1)O surface, the molecules are oriented in the orthogonal [0 0 1] direction, i.e., along the “added” Cu-O rows of the Cu(1 1 0)-(2 × 1)O surface. The energetic position and line shape of the main RDS feature differs for the two substrates and varies with p-6P coverage. This fine structure is discussed in terms of different molecular conformations, adlayer structure and vibronic replicas.  相似文献   

15.
The adsorption of cyanide (CN) or oxygen atom, as well as the coadsorption of CN + O on Cu (1 0 0) surface is studied by using density functional theory (DFT) and the cluster model method. Cu14 cluster is used to simulate the surface. Perpendicular and parallel bonding geometries of CN adsorbed on Cu (1 0 0) surface are considered, respectively. The present calculations show that the CN may be absorbed on top and bridge sites by carbon atom of cyanide (C-down), and C-down on top site is the most favorable. The adsorbed C-N stretch frequencies compared with that of the gaseous CN species are all red-shifted, except the C-down on top site. The charge transfer from the surface to the CN species leads to an increase in work function for the Cu surface. The oxygen atom adsorbed on the four-fold hollow site of Cu (1 0 0) is the most favorable, and is consistent with the experimental study. The coadsorption of O at a four-fold hollow site tends to block adsorption of CN at the nearby sites. If O coverage increases, the CN may be adsorbed on the top and bridges sites with the C-down model. The reaction CN + O → OCN on the Cu (1 0 0) is predicted to be exothermic, and formed OCN species may be stably absorbed on the Cu (1 0 0).  相似文献   

16.
First-principles calculations were performed to study the properties of O adsorption on Ni3Al (0 0 1), (0 1 1), and (1 1 1) surfaces using the Cambridge serial total package (CASTEP) code. Stable adsorption sites are identified. The atomic and electronic structures and adsorption energies are predicted. The adsorption sites for O on the Ni3Al (0 0 1) surface are at the 2Ni–2Al fourfold hollow site, whereas O prefers to adsorb at the Ni–Al bridge site on (0 1 1) surface and 2Ni–Al threefold hollow site on (1 1 1) surface. It is found that O shows the strongest affinity for Al and the state of O is the most stabilized when O adsorbs on (0 0 1) surface, while the affinity of O for Al on (0 1 1) surface is weaker than (0 0 1) surface, and (1 1 1) surface is the weakest. The stronger O and Al affinity indicates more stable Al2O3 when oxidized. The experiment has shown that the oxidation resistance of single crystal superalloy in different orientations improves in the order of (1 1 1), (0 1 1), and (0 0 1) surface, suggesting that the oxidation in different crystallographic orientations may be related to the affinity of O for Al in the surface.  相似文献   

17.
We present a multi-scale Monte Carlo study of the oxidation of the Cu(1 0 0) surface based on the Bortz-Kalos-Lebowitz model with the equilibrium energetics obtained from ab initio calculations. The radial and island size distribution functions are examined and Cu-O structures are analyzed at different temperatures and coverages. We concentrate on the coverages of 0.3 monolayer O or less, with variable sub-monolayer coverages of Cu. The results show that even though the ab initio calculations yield a higher barrier for O than for Cu adatom diffusion on Cu(1 0 0), the stability of Cu structures causes the O adatoms to be more mobile on the Cu(1 0 0) surface than the Cu adatoms. We are able to reproduce the c(2 × 2)-O domains seen in the experiments. However, we give an alternative explanation based on the repulsive interactions of O that, on one hand, cause the local ordering and, on the other hand, prohibits large well-ordered domains. We also give interpretation on the formation of the R45°-O reconstruction of Cu(1 0 0) above the O coverages of 0.3 monolayer based on the ab initio energetics.  相似文献   

18.
H.C. Poon 《Surface science》2006,600(12):2505-2509
A structural study has been performed on the MgO(1 1 1)-(1 × 1) surface by low energy electron diffraction (LEED) using experimental data obtained with a delay-line-detector LEED (DLD-LEED) system to minimize electron damage. It was found that the surface is terminated by a hydroxide layer with the top O-Mg interlayer spacing equal to 1.02 Å, which is close to the spacings between Mg and O planes in bulk brucite crystals (Mg(OH)2). This is in good agreement with a recent study using photoelectron diffraction (PhD) spectroscopy and density functional theory calculation (DFT) [V.K. Lazarov, R. Plass, H.-C. Poon, D.K. Saldin, M. Weinert, S.A. Chambers, M. Gajdardziska-Josifovska, Phys. Rev. B 71 (2005) 115434]. The second interlayer spacing shows a small expansion of 3% and the third is bulk-like, while the DFT calculation predicted that the spacings below the top one are all bulk-like. This result clearly favors hydroxylation [K. Refson, R.A. Wogelius, D.G. Fraser, M.C. Payne, M.H. Lee, V. Milman, Phys. Rev. B 52 (1995) 10823] as a way of stabilizing the MgO(1 1 1) surface at low temperature over metallization, which has a top layer spacing of 0.86 Å for O termination and 1.25 Å for Mg termination [Lazarov et al. 2005; T. Tsukada, T. Hoshino, Phys. Soc. Jpn. 51 (1982) 2562, J. Goniakowski, C. Noguera, Phys. Rev. B 60 (1999) 16120].  相似文献   

19.
This study investigated the dynamics of copper atoms adsorbed on Si(1 1 1)-7 × 7 surfaces between 300 K and 623 K using a variable-temperature scanning tunneling microscope (STM). The diffusion behavior of copper clusters containing up to ∼6 atoms into a particular half unit cell of the 7 × 7 reconstructed Si(1 1 1) surface was considered. The movements and the formation of copper clusters were tracked in detail. The activation energies and pre-exponential factors for various diffusion paths were estimated. Finally, the Cu-etching-Si process and the quasi-5 × 5 incommensurated phase of Cu/Si islands were discussed.  相似文献   

20.
Scanning tunneling microscopy (STM) has been used to study the various possible structures of adsorbed Bi on the Cu(1 0 0) surface, after equilibration at a temperature of 520 K. All of the structures previously identified by X-ray diffraction (lattice gas, c(2 × 2), c(9√2 × √2)R45°, and p(10 × 10), in order of increasing Bi-coverage) were found to be present on a single sample produced by diffusing Bi onto the Cu(1 0 0) surface from a 3-d source. By investigating the possible coexistence of various pairs of phases, it was demonstrated that the c(2 × 2) phase transforms to the c(9√2 × √2)R45° phase by a first order transition, whereas the transition from c(9√2 × √2)R45° to p(10 × 10) is continuous. In addition, the structure of surface steps was studied as a function of Bi-coverage. The results showed that the presence of Bi changes the nature of the step-step interactions at the Cu(1 0 0) surface from repulsive to attractive. The attractive step-step interactions transform any small deviations from the nominal (1 0 0) orientation of the Cu substrate into (3 1 0) microfacets. When compared with the known equilibrium crystal shape (ECS) of Bi-saturated Cu, the observed microfaceting may imply that the ECS of Cu-Bi alloys is temperature dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号