首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tm3+/Er3+:NaGd(MoO4)2 crystal with dimensions of Φ22×30 mm3 was grown by Czochralski method. Polarized spectra and fluorescence lifetime for the 4I13/2(Er3+)→4I15/2(Er3+) transition at room temperature were investigated. Based on the Judd-Ofelt theory, the spontaneous transition probabilities, the fluorescent branching ratios and the radiative lifetimes were calculated. The fluorescence lifetime was measured to be 1.81 ms. The detailed excited-transition mechanism with 800 nm radiation is also discussed.  相似文献   

2.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

3.
Zinc oxide/zinc germanium oxide (ZnO/Zn2GeO4) porous-like thin film and wires has been fabricated by simple thermal evaporation method at temperature about 1120 °C for 2.5 h. The structural and optical properties of the porous-like-thin film and wires have been investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. Metal semiconductor metal (MSM) photodetector structure was used to evaluate the electrical characteristics by using current-voltage (I-V) measurements. Room temperature photoluminescence spectrum of the sample shows one prominent ultraviolet peak at 378 nm and a shoulder at 370 nm. In addition, broad visible blue emission peak at wavelength 480 nm and green emission peak at 500 nm are also observed. Strong photoelectric properties of the MSM in the UV demonstrated that the porous-like-thin film and wires contribute to its photosensitivity and therefore making ZnO/Zn2GeO4 wires potential photodetector in the shorter wavelength applications.  相似文献   

4.
Erbium-doped MoO3−Bi2O3−TeO2 (MBT) glasses suitable for broadband optical amplifier applications have been fabricated and characterized optically. The maximum phonon band of undoped glasses is at 915 cm−1, and the emission from the Er3+: 4I13/2 → 4I15/2 transition locates around 1.53 μm with a full width at half maximum (FWHM) of ∼80 nm. The lifetime and quantum efficiency of the 4I13/2 level are 2.13 ms and ∼90%, respectively. Under the same measurement condition, the upconversion emission intensities at 550 nm in Er3+-doped MBT glasses is about 30 times weaker than that in Er3+-doped Na2O−ZnO−TeO2 (NZT) glasses.  相似文献   

5.
In an attempt to find a neodymium-vanadate system with long lifetime of 4F3/2 level and relatively strong 4F3/24I11/2 emission for laser applications, the optical properties of Nd3+ in a new KZnLa(VO4)2 host is reported. The crystalline samples were obtained at 900 °C in air. The samples were crystallized in monoclinic system and were isostructural with KZnLa(PO4)2. KZnLa0.99Nd0.01(VO4)2 strongly emits in the near infrared range with the maxima at 871.6 and 1057 nm upon excitation through the 4F5/2 level (808 nm) or by the charge transfer bands of VO43−. The lifetime of 4F3/2 level of Nd3+ ion is larger than that observed in other neodymium-vanadates systems.  相似文献   

6.
La2TeO6:Eu3+ nanophosphors were prepared by Pechini sol-gel process, using lanthanide nitrates and telluric acid as precursor. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TG), photoluminescence spectra (PL) and fluorescence lifetime were used to characterize the resulting phosphors. The results of XRD indicate that all samples crystallized completely at 1023 K and are isostructural with the orthorhombic La2TeO6. SEM study reveals that the samples have a strong tendency to form agglomerates with an average size ranging from 50 to 80 nm. The photoluminescence intensity and chromaticity were improved for excitation at 254 and 395 nm. The optimized phosphor La1.80Eu0.10TeO6 could be considered as an efficient red-emitting phosphor for solid-state lighting devices based on GaN LEDs.  相似文献   

7.
We studied the spectroscopic characteristics of telluride glass with the host composition (0.85)TeO2-(0.15)WO3, containing 0.25 and 1.0 mol% thulium oxide (Tm2O3). By analyzing the absorption spectra with the Judd-Ofelt theory, the average radiative lifetimes of 305±7.5 μs and 1.95±0.02 ms were determined for the 3F4 and 3H4 levels, respectively. Measured fluorescence lifetime of the 3F4 level decreased from 218 to 51 μs for the 0.25 and 1.0 mol% Tm2O3 doped samples, respectively, indicating the effect of boosted non-radiative decay at higher doping concentrations. A similar trend was observed for the 3H4 level, where the fluorescence lifetime decreased from 1.86 ms to 350 μs at these concentrations. The quenching of the 1460 nm (3F43H4) emission in favor of the 1800 nm (3H43H6) emission due to cross relaxation was further evident in the fluorescence spectra of the samples. The calculated stimulated emission cross sections (3.73±0.1×10−21 cm2 at 1460 nm and 6.57±0.07×10−21 cm2 at 1808 nm) reveal the potential importance of the Tm3+:(0.85)TeO2-(0.15)WO3 glass for applications in fiber-optic amplifiers and fiber lasers.  相似文献   

8.
The Ce3+ ion was introduced into Er3+ doped TeO2-GeO2-Nb2O5-Li2O (TGNL) glass to improve the 1.5 μm fluorescence characteristics. As increasing of Ce3+ concentration, the lifetime of Er3+:4I11/2 level is shortened form 360 to 225 μs, while the Er3+:4I13/2 level remains unchanged. Accordingly, the upconversion fluorescence (blue, green and red) was quenched. Improved 1.5 μm emission is obtained and the reason is ascribed to the increase of nonradiative rate between the 4I11/2 and 4I13/2 level of the Er3+ ions.  相似文献   

9.
Effects of WO3 and CdO on the spectroscopic properties of Nd3+ doped tellurite glasses were investigated. The optical band gaps and Urbach energies of the samples were determined using the dependence of the absorption coefficient on the photon energy. The Urbach energies were found to vary from 0.18 to 0.25 eV as the WO3 content in the binary glasses decreased from 20.0 to 10.0 mol% while the optical band gap of the same glasses did not show an appreciable dependence on the glass composition. Judd-Ofelt (Ωt) parameters were calculated from the optical absorption spectra measured at room temperature. In all the glasses the J-O parameters follow the same trend as Ω2>Ω6>Ω4. The J-O intensity parameters were used to compute the radiative properties such as the radiative transition probabilities (Aed), branching ratios (β) and radiative lifetimes (τr) for all the possible fluorescence bands. The fluorescence spectra obtained upon 805.2 nm excitation exhibited an intense emission band centered at 1064 nm (4F3/24I11/2) and two weak bands at 910 nm (4F3/24I9/2), and 1340 nm (4F3/24I13/2). The stimulated emission cross-section for the 1064 nm emission was determined using the emission spectra. The highest gain bandwidth (σe×ΔλP) was determined to be 155.4 for the 0.79TeO2-0.15WO3-0.05CdO ternary glass composition, which could be more useful as promising material for the design and development of fiber amplifiers and lasers.  相似文献   

10.
The comparative investigation on the spectroscopic properties of Er3+ in low phonon energy Bi2O3-GeO2-Ga2O3-Na2O glasses codoped with Ce3+ ion and added with B2O3 component, respectively, is presented. With increasing Ce2O3 content from 0 to 0.8 mol% or B2O3 content from 0 to 15 mol%, the lifetime of Er3+:4I11/2 level decreases dramatically from 607 to 283 μs or to 197 μs, and the upconversion fluorescence is quenched in both glass samples. The nonradiative energy transfer from Er3+:4I11/2→Ce3+:2F5/2 or the enhanced multiphonon relaxation process together with the energy transfer between Er3+ and OH groups are, respectively, responsible for the results. Meanwhile, the lifetime of 4I13/2 level remains almost unchanged in Er3+/Ce3+-codoped glasses whereas it decreases rapidly in B2O3-added cases. As a result, Er3+/Ce3+ codoping improves the 1.5 μm fluorescence emission intensity, however, B2O3 addition has a negative effect on it. The research results indicate that the Er3+/Ce3+-codoped bismuth glasses will be preferable for obtaining efficient 980 nm pumped EDFA.  相似文献   

11.
Intense blue upconversion emission at 480 nm has been obtained at room temperature in Tm3+-Nd3+ co-doped Ta2O5 channel waveguides fabricated on a Si substrate, when the sample is excited with an infrared laser at 793 nm. The upconversion mechanism is based on the radiative relaxation of the Nd3+ ions (4F3/2 → 4I11/2) at about 1064 nm followed by the absorption of the emitted photons by Tm3+ ions in the 3H4 excited state. A coefficient of energy transfer rate as high as 3 × 10−16 cm3/s has been deduced using a rate equation analysis, which is the highest reported for Tm-Nd co-doped systems. The confinement of the 1064 nm emitted radiation in the waveguide structure is the main reason of the high energy transfer probability between Nd3+ and Tm3+ ions.  相似文献   

12.
A comparative study of Nd:GdVO4 and Nd:YVO4 crystal lasers pumped by a fiber-coupled diode array has been conducted at the 4F3/2-4I9/2 transitions wavelengths of 912 nm and 914 nm, as well as when intracavity frequency-doubled to 456 nm and 457 nm, respectively. At the fundamental wavelength of 912 nm and second harmonic wavelength of 456 nm, maximum output powers from the Nd:GdVO4 crystal laser were 7.85 W and 4.6 W at a pump power of 29 W. All the results obtained from Nd:GdVO4 were superior to those of Nd:YVO4, indicating that Nd:GdVO4 is a more efficient laser crystal than Nd:YVO4 for laser operation on the 4F3/2-4I9/2 transitions.  相似文献   

13.
The up-conversion (UC) and near infrared (NIR) luminescence of Er3+/Yb3+ co-doped phosphate glass are investigated. In the UC emission range, the 523 nm, 546 nm green emissions and the 659 nm red emission are observed. With the increasing pump power, the intensity ratios of I523/I659, I546/I659 and I523/I546 increase gradually. The phenomenon is reasonably interpreted by theoretical analysis based on steady state rate equations. The emission cross section of the infrared emission at 1546 nm is larger (about 6.7 × 10− 21 cm2), which is suitable for making fiber amplifier.  相似文献   

14.
Bi3TiNbO9:Er3+:Yb3+ (BTNEY) thin films were fabricated on fused silica by pulsed laser deposition. It was demonstrated that different laser fluence and substrate temperature during growth of BTNEY upconversion photoluminescence (UC-PL) samples control the film’s grain size and hence influences the UC-PL properties. The average grain size of BTNEY thin films deposited on fused silica substrates with laser fluence 4, 5, 6, and 7 J/cm2 are 30.8, 35.9, 40.6, and 43.4 nm, respectively. The 525 nm emission intensities increase with the deposition laser fluence and the emission intensities of BTNEY thin film deposited under 700 and 600 °C are almost 24 and 4 times, respectively, as strong as those of samples under 500 °C. The grain size of BTNEY thin film increases with the increasing temperature. UC-PL of BTNEY films is enhanced by increasing grain size of the films.  相似文献   

15.
Epitaxial Pr0.5Ca0.5MnO3 films have been synthesized on (0 0 1) SrTiO3 substrate using a chemical solution deposition technique and two-step post-annealing process. The zero field resistivity of the films shows semiconducting behavior and a characteristic of charge ordering is observed at 230 K. The resistivity of the 10 nm film did not show any effect with the magnetic field. However, melting of charge ordering was observed for the 120 nm film at an applied magnetic field of 4 T. Large decrease in the resistivity of the 120 nm film (<100 K) resulted in magnetoresistance of nearly −100% at 75 K.  相似文献   

16.
The green up-conversion fluorescence of Er3+ ions doped in an nonlinear optical ZnO-Nb2O5-TeO2 glass was observed by using 800 nm excitation from a regenerative femtosecond (fs) Ti:Sapphire laser. The detailed analysis on two fluorescence lines at 526 nm (2H11/2-4I15/2) and 548 nm (4S3/2-4I15/2) revealed the fs laser heating of the multi-component TeO2-based glass, which was possibly due to its nonlinear absorption of the host glass via the imaginary part of the third-order optical susceptibility (χ(3)). The result was compared with that of a Er3+-doped aluminosilicate glass under the same irradiation condition. When the fs laser was irradiated to the multicomponent TeO2-based glass in the power density of 150 TW/cm2, the laser spot was heated up to ∼520 K, which however was still less than the glass transition temperature (Tg=688 K). This technique provides a useful sensing method of laser spot temperature even inside transparent materials.  相似文献   

17.
Al2O3:Si,Ti, prepared under oxidizing condition at high temperature, gives PL emission around 430 nm when excited with 240 nm. The Al2O3:C, TL/OSL phosphor, also shows emission around 430 nm, which corresponds to characteristic emission of F-center. Thus, to identify the exact nature of luminescent center in Al2O3:Si,Ti, fluorescence lifetime measurement studies were carried out along with the PL,TL and OSL studies. The PL and TL in Al2O3:Si,Ti show emission around 430 nm and the time-resolved fluorescence studies show lifetime of about 43 μs for the 430 nm emission, which is much smaller than the reported lifetime of ∼35 ms for the 430 nm emission (F-center emission) in Al2O3:C phosphor. Therefore, the emission observed in Al2O3:Si,Ti phosphor was assigned to Ti4+ charge transfer transition. Fluorescence studies of Al2O3:Si,Ti do not show any traces of F and F+ centers. Also, Ti4+ does not show any change in the charge state after gamma-irradiation. On the basis of the above studies, a mechanism for TSL/OSL process in Al2O3:Si,Ti is proposed.  相似文献   

18.
A series of Er3+/Yb3+-co-doped 60Bi2O3-(40−x) B2O3 -xGa2O3 (BBGA x=0, 4, 8, 12, 16 mol%) glasses have been prepared. The absorption spectra, emission spectra, fluorescence lifetime of Er3+:4I13/2 level and thermal stability were measured and investigated. Three Judd-Ofelt intensity parameters Ωt (t=2,4,6) (Ω2=(4.67-5.93)×10−20 cm2, Ω4=(1.50-1.81)×10−20 cm2, Ω6=(0.92-1.17)×10−20 cm2) of Er3+ ions were calculated by Judd-Ofelt theory. It is found that the Ω6 first increases with the increase of Ga2O3 content from 0 to 8 mol% and then decreases, which is mainly affected by the number of non-bridging oxygen ions of the glass network. The high peak of stimulated emission cross-section () of Er3+: 4I13/24I15/2 transition were obtained according to McCumber theory and broad full width at half maximum (FWHM=69-76 nm) of the 4I13/24I15/2 transition of Er3+ ions were measured. The results indicate that these new BBGA glasses can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

19.
Amorphous Lu2O3 high-k gate dielectrics were grown directly on n-type (100) Si substrates by the pulsed laser deposition (PLD) technique. High-resolution transmission electron microscope (HRTEM) observation illustrated that the Lu2O3 film has amorphous structure and the interface with Si substrate is free from amorphous SiO2. An equivalent oxide thickness (EOT) of 1.1 nm with a leakage current density of 2.6×10−5 A/cm2 at 1 V accumulation bias was obtained for 4.5 nm thick Lu2O3 thin film deposited at room temperature followed by post-deposition anneal (PDA) at 600 °C in oxygen ambient. The effects of PDA process and light illumination were studied by capacitance-voltage (C-V) and current density-voltage (J-V) measurements. It was proposed that the net fixed charge density and leakage current density could be altered significantly depending on the post-annealing conditions and the capability of traps to trap and release charges.  相似文献   

20.
Thin films of ZnWO4 and CdWO4 were prepared by spray pyrolysis and the structural, optical, and luminescence properties were investigated. Both ZnWO4 and CdWO4 thin films showed a broad blue-green emission band. The broad band of ZnWO4 films was centered at 495 nm (2.51 eV) consisted of three bands at 444 nm (2.80 eV), 495 nm (2.51 eV) and 540 nm (2.30 eV). The broad band of CdWO4 films at 495 nm (2.51 eV) could be decomposed to three bands at 444 nm (2.80 eV), 495 nm (2.51 eV) and 545 nm (2.28 eV). These results are consistent with emission from the WO66− molecular complex. The luminance and efficiency for ZnWO4 film at 5 kV and 57 μA/cm2 were 48 cd/m2 and 0.22 lm/w, respectively, and for CdWO4 film the values were 420 cd/m2 and 1.9 lm/w.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号