首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This paper revisits the important issue of differential diffusion and provides new experimental results and subsequent analysis that attempts to quantify the relationship between molecular diffusion, turbulent diffusion and their mutual interference in non-reacting axisymmetric coaxial jets of variable Reynolds number. The reported investigation has been focused on the analysis of molecular diffusion of a He/CO2 mixture in air by combining line imaging of Rayleigh scattering and laser Doppler anemometry (LDA) to determine length scales associated with differential diffusion and turbulent transport. Line imaging Rayleigh scattering was performed applying the index-matching method with a mixture of two gaseous species having scattering cross-sections respectively lower and higher of that of air and the cross-section of the mixture identical to that of the co-flowing air. Any measured variation in scattering intensity is therefore due to differential diffusion between the two species. Instantaneous and ensemble averaged line profiles of Rayleigh scattering intensity are presented and a characteristic length scale associated with differential diffusion is deduced. Autocorrelation analysis is applied to obtain the characteristic scale of differential diffusion fluctuations and the integral length scales of velocity fluctuations, as measured by LDA. Theoretical information from the literature is used in relating these scales to the molecular and turbulent diffusion coefficients, assuming homogeneous and isotropic turbulence, and the ratio of molecular to turbulent diffusivity is estimated as a function of the Reynolds number. The results confirm that the average contribution of molecular diffusion to the effective diffusivity into the air stream progressively reduces when the turbulence level increases. They also suggest that, at higher Re, the differential diffusion remains significant down to the scalar dissipation length scale, and could influence mixing at the molecular level and thus chemical reactions.  相似文献   

2.
3.
 Two-point density measurements by laser induced Rayleigh scattering are used in this study to fully characterise the scalar field in a Bunsen type turbulent premixed flame. The two points are separated within the flame brush in the axial or radial directions. Correlation coefficients are obtained by comparing the evolution of one-point density fluctuations in time or the two-point density fluctuations in both space and time. Time and length scales of the scalar field, and the mean convection velocity of the turbulent scalar structures are deduced from these correlation coefficients. Time scales are calculated from the auto-correlation coefficients, length scales are determined from the space correlation coefficients and the mean convection velocity of the scalar structures in the axial direction is deduced from the space–time correlation coefficients. The relevance of these results for analysing and modelling the structure of turbulent premixed flames is discussed. Received: 30 April 1996 / Accepted: 2 September 1997  相似文献   

4.
减阻工况下壁面周期扰动对湍流边界层多尺度的影响   总被引:1,自引:0,他引:1  
通过在平板壁面施加不同频率振幅的压电陶瓷振子周期性扰动,进行了湍流边界层主动控制减阻的实验研究.在压电陶瓷振子最大减阻工况下(80 V和160Hz),使用单丝边界层探针对压电振子自由端下游2mm处进行测量,得到不同法向位置流向速度信号的时间序列.通过对比施加控制前后的多尺度分析,发现压电振子产生的扰动只对近壁区产生影响,使得近壁区大尺度脉动降低,小尺度脉动强度增大,而对边界层的外区则基本没有影响.进一步对大尺度和小尺度的脉动信号进行条件平均,发现压电振子产生的扰动对小尺度脉动的影响在时间相位上并不均匀,小尺度脉动强度在大尺度脉动为正时比在大尺度脉动为负时具有更明显的增加.这表明壁面周期扰动主要通过使大尺度高速扫掠流体破碎为小尺度结构,来影响相应的高壁面摩擦事件,从而达到减阻效果.   相似文献   

5.
In the present work we describe how turbulent skin-friction drag reduction obtained through near-wall turbulence manipulation modifies the spectral content of turbulent fluctuations and Reynolds shear stress with focus on the largest scales. Direct Numerical Simulations (DNS) of turbulent channels up to Re τ = 1000 are performed in which drag reduction is achieved either via artificially removing wall-normal turbulent fluctuations in the vicinity of the wall or via streamwise-travelling waves of spanwise wall velocity. This near-wall turbulence manipulation is shown to modify turbulent spectra in a broad range of scales throughout the whole channel. Above the buffer layer, the observed changes can be predicted, exploiting the vertical shift of the logarithmic portion of the mean streamwise velocity profile, which is a classic performance measure for wall roughness or drag-reducing riblets. A simple model is developed for predicting the large-scale contribution to turbulent fluctuation and Reynolds shear stress spectra in drag-reduced turbulent channels in which a flow control acts at the wall. Any drag-reducing control that successfully interacts with large scales should deviate from the predictions of the present model, making it a useful benchmark for assessing the capability of a control to affect large scales directly.  相似文献   

6.
This work illustrates the possibilities of the Ensemble-Empirical-Mode-Decomposition (E-EMD) technique for a detailed analysis of the time and space characteristics of the wall-pressure fluctuations under a turbulent flow. Pressure fluctuations are measured with a linear microphone array, for the cases of a turbulent boundary layer and for a diffuse airborne acoustic field. The E-EMD technique is shown to be an efficient tool for representing the spatial scales of the turbulent fluctuations at each instant. In particular, this representation is obtained without any particular assumption or a priori information on the data (e.g. temporal or spatial stationarity of the wall pressure data is not required), and acts, when applied to wide-band turbulent signals, as a wavenumber filter. Finally, it is shown how, to some extent, the E-EMD technique can separate at each instant the acoustic (propagative) from the hydrodynamic (convective) energy.  相似文献   

7.
Investigation of turbulence modification in a non-reactive two-phase flow   总被引:1,自引:0,他引:1  
In a two-phase flow the influence of a dispersed phase on the turbulence properties of a continuous phase, known as turbulence modification, is investigated. An experimental approach is discussed that is suitable for studying the decay of grid-generated turbulence in a vertically orientated wind tunnel with a cross-section large enough to avoid influences from walls. Phase Doppler anemometry is used to characterize both single and two-phase flow by measuring mean axial and radial velocity components, velocity fluctuations, turbulent kinetic energy, and integral time scales. By direct comparison of results from single- and two-phase flows, the feedback of the dispersed phase on the continuous phase can be isolated. The data is used to deduce a source term for particle-induced turbulence production appropriate for a numerical simulation of the flow, based on the Reynolds-averaged Navier-Stokes equations. Although of special importance for a detailed understanding of turbulent two-phase combustion, additional complexity introduced by evaporation and chemical reactions is avoided by using glass beads as dispersed phase.  相似文献   

8.
Stationary and non-stationary grid-generated turbulence was studied using a complementary technique that combines empirical mode decomposition (EMD) and triple-decomposition. Non-stationary conditions were generated by superimposing periodic and random fluctuations on the original flow. Empirical mode decomposition (EMD) was applied as a filter to separate these fluctuations from the turbulent velocity component. Triple-decomposition was then used and the turbulent intensity, the integral length scales and the Power Spectral Density of the velocity were determined. How to use EMD in order to optimize this decomposition is discussed. Finally, the properties of the turbulence are compared to those characterized without addition of fluctuations and a good agreement is found.  相似文献   

9.
 Simultaneous velocity measurements at two points have been carried out with a two-component laser Doppler velocimeter in order to characterise the turbulence along the impeller stream of a Rushton turbine in a water tank. In addition to mean values of the velocity and its fluctuations, space–time correlations have been studied to enable the determination of the convection velocity as well as of the scales of the turbulent structures and to investigate the validity of Taylor’s hypothesis. A correction to the relationship between space and time correlations is proposed. Received: 22 March 1996/Accepted: 23 April 1997  相似文献   

10.
A flat plate experiment was performed in a water tunnel to determine the effects of a vortex generator jet on the characteristics of a turbulent boundary layer at various wall normal locations. The results show that the characteristic distributions of the turbulent fluctuation quantities are nearly unaffected by the induced vortex structures neither in the steady nor in the dynamic blowing case. The shear layer interaction between the turbulent main flow and the jet flow produces less turbulent fluctuations than it is expected from a turbulent free jet flow. Thus, the mixing process of this flow control strategy is based only on a large-scale momentum transport superimposed by the turbulent fluctuation quantities. This allows a separation of scales for physical interpretation and numerical simulations.  相似文献   

11.
The noise generation of turbulent flames is governed by temporal changes of the total flame volume due to local heat release fluctuations. On the basis of the wave equation an expression for the relationship between the acoustic power and the heat release fluctuations is derived and a correlation function is obtained which reveals that the sound pressure level of flames is governed by the spatial coherence. Noise models rely on precise coherence information in terms of characteristic length scales, which are the measure of the acoustic efficiency of the flame. Since the published length scale information is scarce and inconsistent, length scales were measured for a number of laboratory flames using two measurement techniques developed for this purpose: A planar LIF-system with a repetition rate of 1 kHz acquires the instantaneous flame front position and heat release, whereas two chemiluminescence probes with an optics confining the measurement volume to a line of sight provide further spatial correlation data. For all flames investigated the length scales are smaller than the height of the burner exit annulus and they are of the order of the local flame brush thickness. Using the measured length scales, the coherent volume and the efficiency of the noise generation are calculated, which are three orders of magnitude higher than measured. However, the proper order of magnitude is obtained, if only the measured fluctuating part of the thermal power is used in the model and if the periodic formation of local zones with heat release overshoot and deficit are properly incorporated.  相似文献   

12.
利用子波分析对平壁湍流猝发现象的研究   总被引:7,自引:1,他引:7  
李栎  许春晓  张兆顺 《力学学报》2001,33(2):153-162
利用槽道湍流直接数值模拟的数据库,采用子波分析的方法。对平壁湍流猝发现象的多尺度特性进行了研究,在不同惊讶上对猝发平均周期进行了统计,并利用局部标度指数研究了猝发过程的奇异性。  相似文献   

13.
This experimental study investigated the turbulent transport dissimilarity with a modulated turbulence structure in a channel flow of a viscoelastic fluid using simultaneous particle image velocimetry and planar laser-induced fluorescence measurements. An instantaneous dye concentration field with fluctuating velocity vectors showed that mass was transferred by hierarchically large-scale wavy motions with inclination. A co-spectral analysis showed that the spatial phase modulation of the streamwise velocity and dye concentration fluctuations for the wall-normal velocity fluctuation corresponded to the relaxation time. The occurrence of intense dye concentration fluctuation and small streamwise velocity fluctuation in a thin boundary layer caused dissimilar turbulent transport because of the non-zero negative correlation of the streamwise velocity and dye concentration fluctuations for the wall-normal velocity fluctuation only on large scales. This explains the turbulent transport dissimilarity which leads to the zero averaged Reynolds shear stress and non-zero wall-normal turbulent mass flux.  相似文献   

14.
The paper presents numerical investigations of square jets in a wide range of Reynolds numbers with varying inlet turbulence characteristics. The research focuses on flow characteristics depending on inflow turbulent length/time scales and excitation frequencies in case of excited jets. It is found that the parameters of inlet turbulence affect the solutions qualitatively when the Reynolds number is sufficiently low. In these cases the impact of varying the turbulent time scale is considerably larger than changing the turbulent length scale. It was also observed that at sufficiently high Reynolds numbers the jets become quite independent of the inlet turbulence characteristics. This confirms findings of Xu et al. (Phys. Fluids, 2013) concerning weak/strong dependence of the jet evolution on inflow conditions. In case of excited jets the excitation frequencies play an important role and influence the jet behaviour most strongly at lower values of the Reynolds number. For some forcing frequencies a bifurcation occurs at sufficiently large forcing amplitudes. This phenomenon turned out to be independent of the assumed length and time scales of the turbulent fluctuations, both in terms of robustness as well as amplitude.  相似文献   

15.
Random particle motion in a turbulent and molecular velocity fluctuation field is considered. Using a spectral representation of the carrier-phase Eulerian velocity fluctuation correlations, a closed system of integral equations for calculating the carrier-phase velocity correlation along the particle trajectory and the particle Lagrangian velocity fluctuation correlation is obtained. Based on this system, the fluctuations of the particle parameters are analyzed. In the limiting case of a passive admixture, an estimate is found for the ratio of the integral Lagrangian and Eulerian time scales and the Kolmogorov constant for the Lagrangian structure function of the carrier-phase velocity fluctuations.  相似文献   

16.
Direct numerical simulation of turbulent incompressible plane-channel flow between a smooth wall and one covered with regular three-dimensional roughness elements is performed. While the impact of roughness on the mean-velocity profile of turbulent wall layers is well understood, at least qualitatively, the manner in which other features are affected, especially in the outer layer, has been more controversial. We compare results from the smooth- and rough-wall sides of the channel for three different roughness heights of h += 5.4, 10.8, and 21.6 for Re τ of 400, to isolate the effects of the roughness on turbulent statistics and the instantaneous turbulence structure at large and small scales. We focus on the interaction between the near-wall and outer-layer regions, in particular the extent to which the near-wall behavior influences the flow further away from the surface. Roughness tends to increase the intensity of the velocity and vorticity fluctuations in the inner layer. In the outer layer, although the roughness alters the velocity fluctuations, the vorticity fluctuations are relatively unaffected. The higher-order moments and the energy budgets demonstrate significant differences between the smooth-wall and rough-wall sides in the processes associated with the wall-normal fluxes of the Reynolds shear stresses and turbulence kinetic energy. The length scales and flow dynamics in the roughness sublayer, the spatially inhomogeneous layer within which the flow is directly influenced by the individual roughness elements, are also examined. Alternative mechanisms involved in producing and maintaining near-wall turbulence in rough-wall boundary layers are also considered. We find that the strength of the inner/outer-layer interactions are greatly affected by the size of the roughness elements.  相似文献   

17.
Applications of spline-based data reduction techniques for molecular tagging velocimetry (MTV) are explored for the case in which two cameras are employed. To accommodate two cameras, an affine warp-mapping scheme that correlates the two camera views is introduced, and the associated uncertainties quantified. Spline-based techniques are examined for both multiple line and grid-based images. The high spatial resolution of the multiple line method enables accurate measurements of the velocity gradient and spatial correlations in a single direction. Such information is required to accurately obtain turbulent integral and Taylor micro scales. Comparison with previous multiple line methods indicates that even with the additional uncertainties associated with two cameras, the present spline technique improves sub-pixel resolution by about a factor of three. This improvement is required to accurately obtain turbulent integral and Taylor length scales.  相似文献   

18.
19.
In this contribution we present results on opacity and radiative power losses in laser-produced plasmas. We focus our attention on the inner shell transition array 1s–2p in an aluminum plasma. At high densities, electron, Doppler and ion Stark broadening play a role in line merging. This is why the PPP line-shape code developed at Université de Provence was adapted to calculate opacity and radiative power losses in Al and Ge ions. Atomic physics data required in PPP calculations is provided by an MCDF code. Comparison with experiments is discussed.  相似文献   

20.
A speckle photographic method, which is sensitive to changes of gradients in fluid density, is applied for analyzing a compressible turbulent air flow with density fluctuations. Spatial correlation coefficients, turbulent length scales, and energy spectra are determined under the assumption of homogeneous isotropic turbulence. The experiments are performed in a shock tube where the flow is passed through a turbulence grid. Measurements are taken before and after the turbulent regime interacts with the normal shock wave reflected from the tube's end wall. Amplification of the turbulence intensity by the shock interaction process is verified quantitatively and is shown to be restricted to the lower wave numbers in the spectrum.A version of this paper was presented at the 11th Symposium on Turbulence, University of Missouri-Rolla, Oct. 17–19, 1988.To Professor Dr.-Ing. Klaus Gersten on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号