首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A two-valve sub-ambient temperature-promoted reversed-phase packed-capillary liquid-chromatography column-switching system has been tailored for sensitive determination of hydrophobic compounds. Such compounds are not easily dissolved in solvent mixtures of non-eluting properties that traditionally are used for solute enrichment in reversed-phase liquid chromatography. Enrichment-column solute focusing of large sample volumes was promoted by use of sub-ambient temperatures only, allowing the use of sample solvents that were stronger or equal to the mobile phase solvent strength. Subsequent column switching and enrichment-column temperature increment provided efficient low-dispersion back-flushed enrichment-column solute desorption onto the analytical column, where the solute was subjected to temperature-programmed gradient action. The antioxidant, Irganox 1076 (octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) extracted from low density polyethylene with 100% acetonitrile served as a hydrophobic model compound. The mobile phase consisted of acetonitrile containing 10 mM triethylamine and formic acid, and the 0.25 mm id enrichment-column and analytical column in lengths of 27 and 250 mm, respectively, were packed with 3.5 microm Kromasil C18 particles. Sample volumes of up to 500 microL were successfully focused on the enrichment column at 5 degrees C using loading flow rates of up to 40 microL min(-1) prior to temperature programming to 90 degrees C. The concentration limit of detection of Irganox 1076 was 6 ng mL(-1) when using an injection volume of 500 microL. The within-assay precision was in the range 3.5-6.8% (n = 6) while the between-day precision was 7.5% (n = 3) relative standard deviation. The method was linear within the investigated mass range 3-100 ng (R2 = 0.9993).  相似文献   

2.
Fast and sensitive packed capillary column switching liquid chromatography methodology has been developed for the determination of the pesticide rotenone in river water. Sample volumes of up to 1 ml are loaded onto a 23 x 0.25 mm, 5 microm Kromasil C18 packed capillary precolumn using a noneluting solvent composition of water-acetonitrile (99:1, v/v) at flow-rates up to 100 microl/min prior to solute backflushing onto a 200 x 0.32 mm, 3.5 microm Kromasil C18 packed capillary analytical column using a mobile phase of water-acetonitrile (30:70, v/v) at a flow-rate of 5 microl/min. The method was evaluated using river water samples spiked with rotenone in the concentration range 0.5-50 ng/ml using UV detection. The within-assay precision was between 5.0 and 7.7% relative standard deviation (RSD, n = 6) and the between assay precision was between 7.5 and 8.9% RSD (n = 6). The method was linear within the investigated mass range displaying a calibration curve correlation factor of 0.997. The mass limit of detection was 10 pg corresponding to a concentration limit of detection of 10 pg/ml, using time-of-flight mass spectrometry.  相似文献   

3.
A fast and sensitive capillary liquid chromatography (cLC) column-switching method with electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) detection for the simultaneous determination of dopamine (D), epinephrine (E), norepinephrine (NE) and serotonin (SE) was pursued. A sample volume of 100 microl was loaded with a mobile phase containing 0.1% pentafluoropropionic acid (PFPA) as ion-pairing agent on a 25 mm x 0.32 mm (i.d.) 5 microm Hypercarb column. A water-acetonitrile (AcN) gradient with 0.1% acetic acid (AcOH) backflushed the compounds onto a 34 mm x 0.32 mm (i.d.) 5 microm Hypercarb analytical column. However, during a series of analyses, oxidation of the catecholamines (CAs) was observed. This was suspected to be due to the loading mobile phase composition and precluded the usefulness of this method even though the achievable detection limit was in the range of 0.75-3.0 ng/ml. The combination of the porous graphitic carbon (PGC) material and the fluorinated strong acids which were required to get enough retention for preconcentration of large volumes cannot be used for easily oxidized compounds as the CAs.  相似文献   

4.
This study presents a simple and rapid solvent exchange procedure using a hollow fiber. Antioxidants (Irganox 1010, Irganox 1076 and Irgafos 168) and solvents such as tetrahydrofuran (THF), carbon tetrachloride and toluene were selected as model compounds and sample solvents, respectively. After injection of the sample solution into the hollow fiber and solvent evaporation, the precipitated analytes in lumen and pores of the fiber were washed with methanol (the mobile phase for separation and determination by HPLC-diode array detection) and good chromatographic peaks were obtained. The effect of different parameters such as fiber length, volumes of sample and washing solvents were investigated and the optimum conditions were selected. The repeatability of the method was tested and it was found that the relative standard deviation (R.S.D.) was less than 10% for all analytes. Also enrichment factors of 3.03, 2.21 and 1.19 times were obtained for Irganox 1010, Irganox 1076 and Irgafos 168, respectively, when 200 μL sample and 50 μL methanol (washing solvent) were used.  相似文献   

5.
A rapid procedure based on a direct extraction and HPLC determination with fluorescence detection of phenylephrine in pharmaceutical sachets that include a large excess of paracetamol (65 + 1, w/w), ascorbic acid (5 + 1, w/w), and other excipients (aspartame and sucrose) was developed and validated. The final optimized chromatographic method for ion-pair chromatography used an XTerra RP18 column, 3 microm particle size, 50 x 3.0 mm id. The mobile phase consisted of a mixture of acetonitrile and buffer (10 mM sodium octane-1-sulfonate, adjusted with H3PO4 to pH 2.2; 200 + 800, v/v), with a constant flow rate of 0.3 mL/min. The separation was carried out at 30 degrees C, and the injection volume was 3 microL. Fluorescence detection was performed at excitation and emission wavelengths of 275 and 310 nm, respectively. The mobile phase parameters, such as the organic solvent fraction (acetonitrile) in mobile phase as an organic modifier, the concentration of sodium octane-1-sulfonate as a counter-ion, temperature, and pH of mobile phase, were studied. As an alternative to ion-pair chromatography, hydrophilic interaction liquid chromatography (HILIC) was investigated using a Luna HILIC column, 3 microm, 100 x 4.6 mm id. The mobile phase consisted of acetonitrile and buffer (5 mM potassium dihydrogen phosphate, adjusted with H3PO4 to pH 2.5; 750 + 250, v/v) at a flow rate of 0.8 mL/min. The separation was carried out at 25 degrees C, and the injection volume was 5 microL. The proposed method has an advantage of a very simple sample pretreatment, and is much faster than the currently utilized HPLC methods using gradient elution and UV detection. Commercial samples of sachets were successfully analyzed by the proposed HPLC method.  相似文献   

6.
Abstract

A simple and rapid reversed-phase liquid chromatographic method for the determination of alprazolam and a-hydroxyalprazolam in plasma is described. Flunictrazepam was used as internal standard. Plasma samples were buffered with sodium borate and extracted with dichloromethane /n-pentane 4:6 v/v for 60 sec on a vortex apparatus. Extraction solvent was evaporated to dryness and extraction residues were reconstituted in the mobile phase. Samples were chromatographed on a 5μ Lichrospher RP-18 column (25cm × 4mm i. d) using acetonitrile/water 40:60 v/v as the mobile phase. The column effluent was monitored at 230nm. The lower limit of detection was 1ng/ml for alprazolam and a-hydroxyalprazolam while the lower limit of quantification was 2ng/ml for both compounds. Peak height and plasma  相似文献   

7.
The present work displays capillary liquid chromatographic column switching methodology tailored for determination of benzo[a]pyrene tetrol isomers in biological matrices using on-line fluorescence and micro-electrospray ionization mass spectrometric detection. A well-established off-line crude solid phase extraction procedure was used in order to make the method compatible with several biological matrices. The solid phase extraction eluates were evaporated to dryness, redissolved in 1.0 ml methanol:water (10:90, v/v), loaded onto a 0.32 mm I.D. x 40 mm 5 microm Kromasil C(18) pre-column for analyte enrichment and back-flushed elution onto a 0.30 mm I.D. x 150 mm 3.5 microm Kromasil C(18) analytical column. The samples were loaded with a flow rate of 50 microl min(-1) and the tetrols were separated at a flow rate of 4 microl min(-1) with an acetonitrile:10 mM ammonium acetate gradient from 10 to 90%. A sample loading flow rate up to 50 microl min(-1) was allowed. The fluorescence excitation and emission were set to 342 and 385 nm, respectively, while mass spectrometric detection of the benzo[a]pyrene tetrols was obtained by monitoring their [M - H](-) molecular ions at m/z 319. The method was validated over the concentration range 0.1-50 ng ml(-1) benzo[a]pyrene tetrols in a cell culture medium with 100 microl injection volume, fluorescence detection and the first eluting tetrol isomer as model compound, resulting in a correlation coefficient of 0.993. The within-assay (n= 6) and between-assay (n= 6) precisions were determined to 2.6-8.6% and 3.8-9.6%, respectively, and the recoveries were determined to 97.9-102.4% within the investigated concentration range. The mass limit of detection (by fluorescence) was 3 pg for all the tetrol isomers, corresponding to a concentration limit of detection of 30 pg ml(-1) cell culture medium. The corresponding mass spectrometric mass limits of detection were 4-10 pg, corresponding to concentration limits of detection of 40-100 pg ml(-1) cell culture medium.  相似文献   

8.
Solid-phase microextraction coupled to liquid chromatography and mass spectrometry (SPME-LC-MS) was used to analyze tricyclic antidepressant drugs desipramine, imipramine, nortriptyline, amitriptyline, and clomipramine (internal standard) in plasma samples. SPME was performed by direct extraction on a PDMS/DVB (60 microm) coated fiber, employing a stirring rate of 1200 rpm for 30 min, pH 11.0, and temperature of 30 degrees C. Drug desorption was carried out by exposing the fiber to the liquid chromatography mobile phase for 20 min, using a labmade SPME-LC interface at 50 degrees C. The main variables experimentally influencing LC-MS response were evaluated and mathematically modeled. A rational optimization with fewer experiments was achieved using a factorial design approach. The constructed empirical models were adjusted with 96-98% of explained deviation allowing an adequate data set comprehension. The chromatographic separation was realized using an RP-18 column (150 mm x 2.1 mm, 5 microm particles) and ammonium acetate buffer (0.01 mol/l, pH 5.50) : acetonitrile (50 : 50 v/v) as mobile phase. Low detection levels were achieved with electrospray interface (0.1 ng/ml). The developed method showed specificity, linearity, precision, and limit of quantification adequate to assay tricyclic antidepressant drugs in plasma.  相似文献   

9.
A simple, rapid and sensitive fluorescence high performance liquid chromatographic method was developed to determine propranolol concentration in the small volume of rat plasma without the solvent extraction step using pronethanol as the internal standard. The analysis was accomplished using a 5 microm CAPCELL PAK analytical cyano column at room temperature and a mobile phase consisted of 1% aqueous acetic acid containing 0.2% triethylamine and acetonitrile (65:35, v/v; pH 3.8). The flow-rate was kept at 0.5 mL/min and column effluent was monitored with a fluorescence detector at an excitation wavelength of 230 nm and an emission wavelength of 340 nm. Retention times for pronethalol and propranolol were 8.5 min and 10.5 min, respectively. Linear regressions for the standard curves were linear in the range 2-800 ng/mL, giving correlation coefficients above 0.998. The detection limit was 1.34 ng/mL. No analytical interference was observed from endogenous components in rat plasma. This simple and sensitive assay method was feasibly applied to the pharmacokinetic study of propranolol after intravenous administration of 2 mg/kg of propranolol to normal and carbon tetrachloride-induced liver cirrhotic rats.  相似文献   

10.
Liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) was used for the quantification of the neuromuscular blocking agent rocuronium in human plasma. Verapamil was used as internal standard. The samples were subjected to a dichloromethane liquid-liquid extraction after ion pairing of the positively charged ammonium compound with iodide prior to LC-MS. Optimized conditions involved separation on a Symmetry Shield RP-18 column (50 x 2.1 mm, 3.5 microm) using a 15-min gradient from 10 to 90% acetonitrile in water containing 0.1% trifluoroacetic acid at 250 microl/min. Linear detector responses for standards were observed from 25 to 2,000 ng/ml. The extraction recovery averaged 59% for rocuronium and 83% for the internal standard. The limit of quantification (LOQ), using 500 microl of plasma, was 25 ng/ml. Precision ranged from 1.3 to 19% (LOQ), and accuracy was between 92 and 112%. In plasma samples, at 20 and 4 degrees C, rocuronium was stable at physiological pH for 4 h; frozen at -30 degrees C it was stable for at least 75 days. The method was found suitable for the analysis of samples collected during pharmacokinetic investigations in humans.  相似文献   

11.
An assay was conducted for the determination of malondialdehyde (MDA) levels in broiler meat. The method involves extraction of tissues with trichloroacetic acid (TCA) and reaction of the TCA extract with 2,4-dinitrophenylhydrazine (DNPH). After separation of the MDA-DNPH complex using a solid-phase extraction C18 column, samples were eluted with 1 mL acetonitrile. Aliquots of 20 microL acetonitrile were analyzed by liquid chromatography on reversed-phase C18 column (3 microm) with UV detection. The products were eluted isocratically with the mobile phase containing acetonitrile-water-acetic acid (39 + 61 + 0.2, v/v/v). The retention time for MDA-DNPH was 6.5 min, and the detection limit was 3.5 microg/kg. Two extraction methods (cold and hot) were also used in the study. The results showed that hot extraction increased results about 55.8% and recovery from samples spiked with 116.6 microg/kg was lower (74.6%) in comparison with cold extraction (94.7%).  相似文献   

12.
A simple and rapid liquid chromatographic with diode-array UV-vis spectrophotometric detection (HPLC-DAD) method for identification of natural dyes has been developed. Chromatographic retention of carminic acid, indigotin, crocetin, gambogic acid, alizarin and purpurin has been studied. The mobile phase consisted of 40 mM SDS-10 mM phosphate buffer solution (pH 2.3)-0.1% TFA (eluent A) and acetonitrile (eluent B) using a programmed gradient (5% B to 95% B). Analyses were carried out on a Phenomenex, Luna 5u NH2 100(a) column (250 mm x 4.60 mm i.d., 5 microm particle) and the operating conditions were: 0.6 ml min(-1) flow rate, 20 microl volume injection and 35 degrees C column temperature. Extracts of samples of natural dyes taken from historical maps belonging to The Royal Chancellery Archives in Granada were successfully analyzed using the proposed method including a new technique for sampling.  相似文献   

13.
A method for the rapid trace analysis of 17 residual pesticides in water by narrow-bore capillary (I.D. 100 microm) gas chromatography-mass spectrometry (GC-MS) using a programmable temperature vaporizer (PTV) was discussed. The method consisted of a large-volume injection (40 microl) by a PTV, high-speed analysis using a narrow-bore capillary column and MS detection. The PTV with solvent vent mode was very useful for large-volume injection into a narrow-bore capillary column because the injected solvent volume could be reduced to less than 2 microl. The analysis time was 8.5 min [less than 50% of the analysis time using conventional columns (I.D. 250 microm)]. A 10-ml volume of river water was extracted by dichloromethane (4 ml), and then the extract was condensed to 1 ml. This extract was analyzed. Mean recoveries for river water spiked at 100 pg/ml ranged from 83.4 to 96.7%. The limit of detections of the 17 pesticides ranged from 1 to 100 pg/ml.  相似文献   

14.
A liquid chromatographic/tandem mass spectrometric method is described for the determination of phencyclidine (PCP) in small volumes of rat serum (e.g. 50 microl). Samples were extracted using a mixed-mode strong cation-exchange column and then separated isocratically using a narrow-bore (2.1 mm i.d.) 3 microm Hypersil phenyl column and a mobile phase consisting of an ammonium formate buffer (pH 2.7) with 60% (v/v) methanol. Detection was accomplished using positive ion electrospray ionization in the multiple reaction monitoring mode. Mass spectra were obtained and peaks were observed at an m/z (% abundance) of 244 (100), 159 (25), and 86 (89). Tandem mass spectra were also obtained from the m/z 244 precursor ion with peaks observed at m/z 159 (100), 86 (96), and 91 (11). Optimum serum PCP sensitivity and precision were obtained at a transition of m/z 244 --> 159. Matrix-associated ion suppression did not significantly affect the accuracy (100-112%) or precision (CV < or =8%) of the assay. The lower limit of quantitation was 1 ng ml(-1) in 50 microl of serum. The method was used to study the serum pharmacokinetics of PCP in rats after an intravenous bolus dose of PCP.  相似文献   

15.
A simple and efficient method, ionic liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV), has been applied for the extraction and determination of some antioxidants (Irganox 1010, Irganox 1076 and Irgafos 168) in water samples. The microextraction efficiency factors were investigated and optimized: 1-hexyl-3-methylimidazolium hexafluorophosphate [C(6)MIM][PF(6)] (0.06 g) as extracting solvent, methanol (0.5 mL) as disperser solvent without salt addition. Under the selected conditions, enrichment factors up to 48-fold, limits of detection (LODs) of 5.0-10.0 ng/mL and dynamic linear ranges of 25-1500 ng/mL were obtained. A reasonable repeatability (RSD≤11.8%, n=5) with satisfactory linearity (r(2)≥0.9954) of the results illustrated a good performance of the presented method. The accuracy of the method was tested by the relative recovery experiments on spiked samples, with results ranging from 85 to 118%. Finally, the method was successfully applied for determination of the analytes in several real water samples.  相似文献   

16.
A sensitive and selective HPLC method with amperometric detection (HPLC-ED) for the determination of rocuronium bromide and its eight impurities has been developed. The analysis was performed on Hypersil 100 Silica column 5 microm (250 mm x 4.6 mm; Thermo Electron). The mobile phase consisting of 4.53 g l(-1) solution of tetramethylammonium hydroxide adjusted to pH 7.4 with 85% phosphoric acid:acetonitrile (1:9), was found the best for the separation and determination of the studied compounds. The chromatograms were recorded over 10 min using the amperometric detection at a potential +0.9 V of the glassy carbon electrode versus the reference electrode Ag/AgCl. The limit of quantitation was 45 ng ml(-1) for rocuronium and from 25 to 750 ng ml(-1) for the examined impurities. The proposed HPLC-ED method was successfully applied to the analysis of rocuronium and its impurities in Esmeron solution for injection.  相似文献   

17.
A temperature-programmed packed capillary LC method with large-volume injection on-column focusing has been developed for screening and determination of 1-(2-methoxyphenyl)piperazine derivatives of airborne toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, hexamethylenediisocyanate and methylenebisphenyl-4,4-diisocyanate, based on sampling methods described in MDHS 25/3. Injection volumes up to 100 microl were successfully loaded onto the 250x0.32 mm I.D. capillary column packed with 3 microm Hypersil ODS particles. The isocyanate derivatives were loaded at 10 degrees C and eluted by a three-step temperature program starting at 10 degrees C for 10 min, followed by a temperature ramp of 2.5 degrees C min(-1) to 45 degrees C and then 9.9 degrees C min(-1) to 90 degrees C. The mobile phase consisted of acetonitrile-acetate buffer (3% triethylamine, pH 4.5) (45:55, v/v). The isocyanate derivatives were dissolved in acetonitrile-acetate buffer (3% triethylamine, pH 4.5) (30:70, v/v) to achieve sufficient focusing. The concentration limit of detection of the individual derivatives utilizing an "U" shaped flow cell with a 8.0 mm light path and an injection volume of 100 microl was 44, 87, 43 and 210 pg ml(-1) for toluene-2,6-diisocyanate, hexamethylenediisocyanate, toluene-2,4-diisocyanate and methylenebisphenyl-4,4-diisocyanate, respectively. Within the investigated concentration range, 10-500 ng ml(-1), the linear calibration curves gave correlation coefficients ranging from 0.994 to 0.998. The repeatability of the method with regard to retention time and peak height ranged from 0.3 to 1.1% and 1.1 to 2.3% (n=9) relative standard deviation, respectively. The average recovery of the method, with regard to toluene-2,4-diisocyanate, was 97.7+/-1.6% (n=9).  相似文献   

18.
谷从影  蔺丽  方能虎  贾金平 《色谱》2007,25(2):174-178
以甲基丙烯酸丁酯为单体,乙二醇二甲基丙烯酸酯为交联剂,在致孔剂存在的条件下原位聚合制备了甲基丙烯酸丁酯毛细管整体柱(150 μm i.d.)。实验中优化了用此整体柱分离3种微囊藻毒素(MC-LR,-YR和-RR)的色谱条件(流动相种类、缓冲溶液浓度、pH、流动相流速),建立了微囊藻毒素的整体柱毛细管液相色谱分离方法,该法可以在9 min之内实现3种微囊藻毒素的基线分离。将该方法应用于实际水样中微囊藻毒素的分析,成功实现了培养水样和巢湖水样中微囊藻毒素的快速分离,两种样品中均检测到MC-LR。结果表明,所制备的甲基丙烯酸酯毛细管整体柱具有良好的重现性、渗透性,在微囊藻毒素的常规检测中具有很好的应用前景。  相似文献   

19.
本文采用超高效液相色谱-串联质谱法(UPLC-MS/MS)和固相萃取法(SPE)建立了血液中29种农药同时筛查、定性、定量分析的方法,血液经4%磷酸水溶液稀释后,震荡10min,以8000r·min-1转速离心10min,取上清液过3mL甲醇和3mL水活化好的Oasis Prime HLB(3cc,60mg)固相萃取小柱,使用3mL5%甲醇水淋洗,3mL乙腈甲醇混合溶剂(90:10)洗脱,接收洗脱液后在40℃条件下氮吹仪吹干,使用0.5mL初始流动相复溶,震荡10s后,过0.22μm水膜,装液质小瓶后进样分析。采用ACQUITY UPLC HSS C18色谱柱(150 mm×2.1mm,1.8μm)分离,流动相为0.1%甲酸乙腈-水/甲酸/甲酸铵(5mmol,pH=3),梯度洗脱,电喷雾电离正离子模式(ESI+),多反应选择离子监测模式(MRM)检测。29种农药的检出限为0.1 ng·mL^-1~5 ng·mL^-1,定量限为0.5 ng·mL^-1~10 ng·mL^-1,回收率为62.4%~97.4%,基质效应为82.8%~109%,相对标准偏差小于10.3%,相关系数均大于0.99,线性关系良好范围为10 ng·mL^-1~1000ng·mL^-1。本文方法灵敏度高,可以对血液中29种农药成分进行筛查、定性、定量分析,能够满足实际血液样品中农药成分检测的需求。  相似文献   

20.
Li Z  Li X  Hu Q  Yin J  Chzn J  Yang G 《Annali di chimica》2006,96(5-6):355-363
In this paper, a new method for the simultaneous determination of palladium, platinum and rhodium ions was developed using a rapid column high performance liquid chromatography equipped with on-line enrichment technique. The palladium, platinum and rhodium ions were pre-column derivatized with DHAR to form colored chelates. The Pb-DHAR, Pt-DHAR and Rh-DHAR chelates could be absorbed onto the front of the enrichment column when they were injected into the injector and sent to the enrichment column [ZORBAX Stable Bound, 4.6 x 10 mm, 1.8 microm] with a 0.05 mol L(-1) of phosphoric acid solution as mobile phase. After enrichment, and by switching the six ports switching valve, the retained chelates were back-flushed by mobile phase and traveling towards the analytical column. The separation of these chelates on the analytical column [ZORBAX Stable Bound, 4.6 x 50 mm, 1.8 microm] was satisfactory with 54% acetonitrile (containing 0.05 mol L(-1) of phosphoric acid and 0.1% of tritonX-100) as mobile phase. Palladium, platinum and rhodium were separated completely within 2 min. By on-line enrichment technique, the enrichment factor of 100 was achieved, and the detection limits (S/N = 3) of palladium, platinum and rhodium reaches 1.4 ng L(-1), 1.6 ng L(-1) and 2.0 ng L(-1), respectively. This method was applied to the determination of palladium, platinum and rhodium in water, urine and soil samples with good results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号