首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The enthalpy of benzylalcohol (BzOH) solution has been determined as a function of alcohol concentration in aqueous trimethyltetradecylammonium bromide (TTAB) solutions in the presence of sodium sulfite or sodium sulfate up to high salt concentration. The electrolytes studied do not seem to induce TTAB sphere-torod transition at least up to 0.6 mol/kg of salt. Comparison with the enthalpic behavior of BzOH in sodium dodecylsulfate solutions and with that of 1-pentanol in both cationic and anionic micellar solutions suggests that the solubilization of BzOH in TTAB solutions is specifically favored by intramolecular interactions between alcohol molecules within the cationic micelles. The replacement of the bromide counterions by the sulfite or sulfate ions has been studied using potentiometry with an ionselective electrode in the case of trimethylhexadecylammonium bromide (CTAB). No difference could be detected between the effects of either divalent anions on the rate of change of the bromide ion-condensation with the salt/surfactant concentration ratioR. The degree of counter-ion condensation on micellar surface depends not only on theR values, but also on the total surfactant concentration.  相似文献   

2.
The association of counter-ions with mixed ionic/nonionic micelles has been investigated in the case of dodecyl/tetradecyl/ and hexadecyl-trimethylammonium bromide with two nonionic surfactants: dodecylpolyoxyethylene 23 and Triton X-100. The degree of association has been measured by potentiometry using a Bromide ion-selective electrode. Previous results with sodium and copper dodecylsulfate suggesting that in the nonionic-rich composition domain, bare mixed micelles are formed without associated counter-ions have been confirmed. These results are in agreement with the prediction of Bjerrum's condition for ion association. The effect of copper dodecylsulfate on the cloud point of Triton X-100 has also been determined as a means of investigating mixed micelles with multivalent counter-ions. The dramatic cloud point increase observed, even larger than with sodium dodecylsulfate, has been discussed as evidence of the solvation of divalent ions by ether groups, a factor which complicates the analysis of multivalent counterion condensation on mixed micelles.  相似文献   

3.
Measurements of counterion binding in mixtures of surfactant aqueous solutions have been performed to study the structure of the anionic/cationic mixed micelle/solution interface. The mixtures studied were SDS/DDAC and STS/TDPC. The binding of chloride and sodium ions to mixed anionic/cationic micelles was measured using ion-specific electrodes. Counterion binding was found to be strongly dependent on the molar ratio of surfactants present. The mixed micelle/solution interface includes the headgroups of both surfactants and counterions of surfactant in excess. The addition of oppositely charged surfactant caused an increasing dissociation of counterions.  相似文献   

4.
We report in this work new results of the study on the non-Newtonian viscosity of aqueous micellar solutions of cetyltrimethylammonium bromide (CTAB) in the presence of potassium bromide (KBr), in the concentration range where the elongated micelles overlap. The experiments have been performed as a function of the surfactant concentration, temperature and shear rate by use of a Couette-viscosimeter.In the non-Newtonian range, at relatively low surfactant concentration (0.25 M/l), our results show that the flow curves obtained at different temperatures converge to a single liner curve with a characteristic slope varying with the surfactant concentration. These same data can be superposed on a master curve when appropriate reduced variables are used. The shape of the flow curves obtained at different temperatures for a sufficiently high surfactant concentration is similar to that obtained for monodisperse polymer solutions at different molecular weights. The slope obtained of about –1 is also predicted by Graessley's model in the theory of microviscoelasticity based on the concept of entanglement for polymer solutions. However, at surfactant concentration higher than 0.25 M/l our results show an unusual behavior. Above some critical shear rate it is possible to obtain an increase of the apparent viscosity with temperature. One possible explanation of this effect can be found in the increase of the entanglement with concentration coupled with the temperature and direct now effects on scission and recombination rate of the micelles.  相似文献   

5.
Mixtures of ammonium decanoate (AmDec) and ammonium perfluoro-octanoate (APFO), in ammonium chloride: ammonium hydroxide buffer at pH 8.8 and an ionic strength of 0.1, were examined by small angle neutron scattering with varying proportions of the two surface active agents. The results indicated that mixed micelles were formed and it is suggested from analysis of the data that these were cylindrical in shape at APFO: AmDec ratios of 21, 11 and 12. At 21 and 11 the micelles were found to contain more APFO than expected on the basis of ideal mixing of the surface active agents in the micelle. At a ratio of 19 the micelles were found to be spherical but larger than those formed from AmDec alone. A speculative model is proposed for the mixed micelle which still, however, allows for segregation between hydrocarbon and fluorocarbon chains within the micelle.  相似文献   

6.
Micellization characteristics and counterion binding properties of cetyltrimethyl ammonium bromide (CTAB) in presence of urea and a nonionic surfactant polyoxyethylene sorbitan monolaurate (PSML), and of sodium dodecyl sulphate (SDS) in presence of urea as well as of several mixtures of CTAB with a bile salt, sodium cholate (NaC), and sodium chloride have been studied. Both urea and PSML have increased the critical micelle concentration (CMC) of the surfactants, the former being more effective than the latter. The analysis of the results supports the pseudophase micellar model to hold over the mass action model. Pure CTAB micelles bind more counterions (96 %) than pure SDS micelles (87 %), and the decreasing effect of urea on the binding is less in case of the former than the latter. A 41 mixture of CTAB and sodium cholate (NaC) can micellize and the micelles bind 87 % bromide ion, whereas 21 and 11 mixtures do not micellize. Micelles of 11 mixture of CTAB and NaCl can bind counter bromide ions to the extent of 92 %. The limiting concentrations of urea required to effect counterion binding by CTAB and SDS micelles are 0.15 mol dm–3 and 0.25 mol dm–3, respectively. Such effect is shown by PSML on CTAB at a ratio 0.281. The activation energy of conduction of SDS has increased in the presence of urea up to a concentration of 4 mol dm–3, at higher concentrations the activation energy has decreased, the effect being more for surfactant concentration above CMC than below.  相似文献   

7.
The counterion binding behaviour of micelles of sodium dodecyl sulphate (SDS) and several bile salts in the pure state have been studied, as well as in mutually mixed states, and in a mixed state with polyoxyethylene sorbitan monolaurate (PSML) as a nonionic surfactant. Electrochemical measurements have shown no counterion binding by the pure bile salt micelles and their mixtures with PSML; they can bind counterions when mixed with SDS, whereas the surfactant anions of SDS micelles bind counterions in the pure state and/or in mixed states with PSML. In the SDS-PSML and SDS-bile salts combinations, the counterion association is decreased by the increased proportions of the second component. The extent of counterion binding by the different systems is presented.  相似文献   

8.
Static light scattering has been measured for aqueous NaCl solutions of cetyltrimethylammonium chloride (CTAC) at 25 °C. While spherical micelles are formed above the critical micelle concentration for 0–1.5 M NaCl solutions, rodlike micelles are formed at NaCl concentrations higher than 1.18 M.The aggregation number of rodlike micelles increases markedly with increasing NaCl concentration, and it is as large as 11400 in 4.0 M NaCl. Long rodlike micelles are semiflexible and behave like wormlike chains. Their contour length and persistence length have been calculated as 630 and 46.4 nm, respectively, in 4.0 M NaCl.Rodlike micelles overlap and entangle together to form a network in semidilute solutions above a threshold micelle concentration. The radius of gyration of the blob can be scaled for its molecular weight with the exponent, 0.55, coinciding with that for isolated rodlike micelles in dilute solutions. The scaling laws for the reciprocal envelope of light scattered in the semidilute regime and for the molecular weight and the radius of gyration of the blob are also discussed with reference to the micelle concentration.  相似文献   

9.
The adsorption isotherms of acetone and methyl ethyl ketone from binary and ternary mixtures in benzene and n-heptane on silica gel were measured. The experimental adsorption data are discussed on the basis of changes of the composition of mixed solvent (benzene + n-heptane) in ternary mixtures. It has been found that the different structures of the surface phase correspond to the system investigated. The marked dependence of the adsorption on the solvent character is demonstrated. For benzene and ternary (ketone + benzene + n-heptane) mixtures a mixed character of the surface phase is observed whose composition is determined by competition of liquid components for silica surface as well as its tendency to complex. Bilayer model of the surface phase gives a good representation of the experimental data for binary systems benzene + ketone.  相似文献   

10.
The micellar properties of aqueous binary mixed solutions of sodium glycocholate, NaGC, and octa-oxyethylene glycol mono-n-decyl ether, C10E8, have been studied on the basis of surface tensions, the mean aggregation number and the polarity of the interior of the micelles. The mean aggregation number, measured by steady state quenching method, decreased with the increase of the mole fraction of NaGC in the mixed system. The polarity of the interior, estimated by the ratio of first and third vibronic peak in a monomeric pyrene fluorescence emission spectrum, suggested that the hydrophobicity of intramicelles increased with the increase of the mole fraction of NaGC in the mixed system. These are considered to be caused by the differences in the chemical structure and the hydrophobic nature between NaGC and C10E8. The mean aggregation number and the polarity of the interior for each micelle near the CMC in lower total concentration of surfactants showed the tendency approaching those of pure micelle of the nonionic surfactant. This suggests that the ratio of NaGC in the initial micelles in the range of lower total concentration near the CMC is lower than that of the corresponding prepared mole fraction in the mixed system. This lower value was confirmed also from theoretical calculation of the ratio of NaGC at the CMC in the mixed micelle by regular solution treatment of Rubingh in the solution.  相似文献   

11.
Data on the rheological properties of the hexadecyl-trimethylammonium salicylate system (CTAB-SA) in water are reported. Three concentrations were used (0.1, 0.01, and 0.001 M). For the highest concentration, the effect of temperature on the rheology was studied in detail.The rheology of the 0.1 M CTAB-SA solution indicates a very uniform micellar size. By contrast with concentrated polymethyl methycrylate dispersions studied by the author, there was a strong divergence between the viscosity-shear rate and viscosity-frequency data, although the plateau low shear rate and frequency values agreed over a wide range of temperature. This effect could be explained by a shear rate dependent diffusion constant. The large temperature variation of the plateau viscosity and elasticity modulus values could be explained by a combination of micellar number concentration and flexibility changes as the temperature varies.At lower concentrations, the rheological data shows evidence of polydispersity in micellar size. Strong shear thickening and extensional viscosity effects are also evident, probably due to micellar overlap and cluster formation in strong shear fields and the alignment of the very long micelles in elongational flow. The shear thickening effects take some 200 s to relax (0.01 M solution). Recovery of the elasticity after shearing the 0.1 M solution is rapid (a few hundred milliseconds).  相似文献   

12.
The location and distribution of acrylic acid and styrene in emulsions made with a cationic surfactant, cetyltrimethylammonium bromide (CTAB), or an anionic surfactant, sodium dodecylsulfate (SDS), were determined with ultra-violet spectroscopy, conductivity, and potentiometry. In these systems, the acrylic acid remains in the aqueous phase near the micelle surface, whereas the styrene is located in the micelles or in emulsified droplets. In the absence of acrylic acid, some of the styrene is solubilized in the micelle interior and some is adsorbed at the micelle inner surface. Upon addition of acrylic acid, all the styrene is displaced to the center of the micelles. The interaction between acrylic acid and CTAB micelles is stronger than that between acrylic acid and SDS micelles. With CTAB, acrylic acid is adsorbed at the micelle surface, whereas with SDS, acrylic acid remains in the intermicellar solution. These differences can account for the differences reported in the emulsion copolymerization of acrylic acid and styrene using CTAB or SDS.  相似文献   

13.
Dramatic differences in the structure of mixed micelles of long chain amine oxides and sodium dodecylsulfate are noted as a function of composition. In the L1 micellar pseudophase, a sphere-to-rod transition driven by ion-dipole interactions between the dissimilar headgroups leads to synergisms in aqueous solution thickening, Ross-Miles foaming, and nonpolar oil solubilization. For example, an astounding seven orders of magnitude increase in the zero shear viscosity and viscoelastic properties are observed at a single total surfactant concentration. The sphere-to-rod transition can be viewed in FT-IR by examining both the CH2 stretching for the methylene tails, and the S-O stretching modes for the sulfate headgroups.  相似文献   

14.
A flexibility parameter, the persistence length, has been evaluated from the radii of gyration and the contour lengths for rodlike micelles of heptaoxyethylene alkyl ethers (C n E7,n=12, 14, 16) and tetradecyldimethylammonium chloride (C14DAC) and bromide (C14DAB) at the observed crossover concentrations between dilute and semidilute regimes. The persistence length range is 43–73 nm, except for C12E7, for which it is 32 nm. The crossover concentrations between dilute and semidilute regimes for the semiflexible rodlike micelles calculated according to Ying and Chu as a function of the molecular weight, the contour length, and the persistence length are consistent with the observed values. The crossover concentration between semidilute and concentrated regimes was, on the other hand, calculated by using the same micelle parameters, including the value of thickness of cross-section of the rodlike micelles. The obtained values are at variance with the observed values. This means that rodlike micelles in semidilute and concentrated solutions might differ in size and/or flexibility from those in dilute solution.  相似文献   

15.
 The conductances of hexadecyltrimethylammonium bromide (HTAB) and tetradecyltrimethylammonium bromide (TTAB) mixtures over the entire mole fraction range of HTAB were measured in aqueous binary mixtures of ethylene glycol monomethyl ether, monoethyl ether, and monobutyl ether, and of diethylene glycol monomethyl ether and monoethyl ether containing 10–30 wt% additive in their respective binary mixtures at 30 °C. Each conductivity curve showed a single break over the whole mole fraction range of HTAB–TTAB mixtures. From the break in the conductivity curve, various micellar parameters were calculated and the results were discussed with respect to the alkoxyethanol's additive effect on the mixed micelle formation. The micellar parameters of HTAB, TTAB, and of their mixtures showed a strong dependence both on the amount as well as on the number of repeating units in the presence of ethylene glycol derivatives, whereas a significant dependence only on the amount of additive was observed in aqueous diethylene glycol derivatives. The results in the former case were attributed to the hydrophobic hydration of the mixed micelles by the ethylene glycol derivatives, which showed a large dependence on the increase in the alkyl chain length of the additive. The hydrophobic hydration was considerably reduced in the case of diethylene glycol derivatives owing to the presence of an extra ether oxygen. An evaluation of the nonideality in the HTAB–TTAB mixtures revealed that in spite of the strong hydrophobic hydration of the HTAB–TTAB mixtures by the alkoxyethanols, the mixed micelles remain almost free from the additive molecules. Received: 11 January 2000/Accepted: 14 April 2000  相似文献   

16.
A theoretical treatment is proposed for the determination of the distribution characteristics of a solubilizate between micellar and aqueous phases from the variation of the critical micelle concentration (CMC) with the molar ratio of components in the system. The theory has been tested by determining the distribution coefficient and free energy of solubilization of n-butanol in the n-butanol/sodium dodecyl sulphate/water system from CMC values determined by conductimetric techniques.  相似文献   

17.
Aqueous solutions of blockcopolymers, consisting of a polyoxypropyleneblock (POP) with a polyoxyethylene-block (POE) at each side, were studied using surface and interfacial tension measurements, static and dynamic light scattering and smallangle neutron scattering techniques, electric birefringence, rheological and DSC-measurements. The compounds were commercial samples and had an approximate average composition EO20PO70EO20, EO18PO58EO18, and EO106PO69EO106. All three compounds formed micelles above a critical concentration. The size of the micellar core is determined by the length of the hydrophobic poly-propyleneoxide block. The transfer energy of a propyleneoxide unit from the aqueous to the micellar phase is about 0.3 kT at room temperature and hence a quarter of the corresponding value for a CH2-group.The aggregation number of the micelles increases strongly with increasing temperature while the hydrodynamic radius remains constant in first approximation. The smallangle neutron scattering (SANS) data show at higher concentrations a strong correlation peak. Both the SANS- and the light-scattering data can be interpreted on the basis of the theory of hard sphere particles.Solutions with a volume fraction beyond about 0.2 gellifie when the temperature is raised above a characteristic value that is at the lowest concentrations slightly above room temperature, shift to lower values with increasing concentrations. Below this gelation temperature DSC-measurements show a phase transition with enthalpies between 40J/g and 80J/g, which is probably due to the dehydration of the PO-groups; this transition can also be observed at low concentrations where no gelation takes place. The position of the correlation peak of the SANS-data is not affected by the gel formation. Some samples, however, show clear evidence of long-range order and seem therefore to consist of cubic liquid crystalline phases. The shear moduli of the gels can qualitatively be understood on the basis of hard sphere models.  相似文献   

18.
Surface tension of aqueous solutions of mixtures of dodecyltrimethylammonium bromide (DTAB) and dodecyltrimethylammonium chloride (DTAC) has been measured and analyzed by using thermodynamic relations. The adsorbed film has been found to contain more DTAB molecules than the solution. The shape formed by the curves of the total molality at constant surface tension against the solution and surface compositions indicates the ideal mixing of the DTAB and DTAC molecules in the adsorbed film. Micellar composition has been estimated at the critical micelle concentration (CMC). The micelles have been found to be richer in DTAB than the solution, but poorer in DTAB than the adsorbed film at the CMC. The DTAB and DTAC molecules have been shown to mix ideally in the micelles. From the comparison with the results on the system of decylammonium bromide and decylammonium chloride, it has been concluded that, on the mixing of surfactants differing only in counter ions, the adsorbed film is influenced more significantly by the ionic head group of the surfactant than the micelle.  相似文献   

19.
In this paper, mixtures of sugar-based decanoyl-N-methylglucamide with three different n-alkyltrimethylammonium bromides (n=12 (DTAB), 14 (TTAB), and 16 (CTAB)) have been studied using conductance and fluorescence spectroscopic techniques. The critical micelle concentration values of pure and mixed systems were determined by both the conductance and the pyrene 1:3 ratio methods. The experimental results were interpreted using thermodynamic mixing approaches based on the pseudophase separation model. These analyses allowed us to determine the interaction parameters and the composition of the mixed micelles through the whole composition range. Since all the ionic surfactants used in this study have the same headgroup, the differences observed between the three mixed systems were attributed to the lengths of their hydrocarbon chains. It was established that, besides interactions of electrostatic character, additional short-range interactions must be considered. By using the static quenching method, the mean micellar aggregation numbers of mixed micelles were obtained. In the cases of the mixed systems with DTAB and TTAB it was observed that the aggregation number is initially reduced with the participation of the ionic component, remaining almost constant and close to the aggregation number of the pure ionic micelle. However, in the systems involving CTAB it is observed that the size of micelles initially increases and then decreases slightly for mixtures with a high content of the ionic component. The hydrophobic index pyrene 1:3 ratio was used to examine possible changes in the micellar micropolarity; however, no definitive conclusions could be derived from these experiments. In order to study the evolution of the local viscosity of the mixed micelles upon addition of the ionic surfactant, fluorescence polarization measurements were carried out with two different probes, fluorescein and coumarin 6. It was found that the participation of the ionic component in the mixed micelle induces the formation of less ordered structure than that of pure nonionic micelles. An attempt was made to correlate these effects with the interaction parameters obtained from the theoretical mixing model and, consequently, with the alkyl chain length of the ionic components.  相似文献   

20.
Static light scattering has been measured on aqueous NaI solutions of dodecylpyridinium iodide (DPI) over NaI concentrations from 0 to 0.05 M. Reduced intensity of scattered light increases with increasing DPI concentration above the critical micelle concentration. The Debye plot is generally a curve with an initially positive slope and with a weakly convex, upward curvature, when the NaI concentration ranges from 0 to 0.005 M. The molecular weight of the spherical micelle of DPI is 28400 in water, and it increases slightly with increasing NaI concentration. The initial slope decreases with increasing NaI concentration and changes from positive to negative across 0.007 M NaI, which is the threshold for the sphere-rod transition and where the micelle has a molecular weight of 34400. At NaI concentrations from 0.01 to 0.05 M, the Debye plot is a curve with an initially negative slope and with a convex, downward curvature. The magnitudes of slope and curvature are larger, and the rodlike micelles of DPI have larger molecular weight and stronger mutual interaction, as the NaI concentration increases. The linear double logarithmic relationship between molecular weight and ionic strength holds for spherical and rodlike micelles, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号