首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel Rh(III)-imprinted amino-functionalised silica gel sorbent was prepared by a surface imprinting technique for preconcentration and separation of Rh(III) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Compared with the traditional solid sorbents and non-imprinted polymer particles, the ion-imprinted polymers (IIPs) had higher adsorption capacity and selectivity for Rh(III). The maximum static adsorption capacity of the imprinted and non-imprinted sorbent for Rh(III) was 29.86?mg?g?1 and 11.23?mg?g?1, respectively. The imprinted Rh(III) was removed with 2?mL of 3% thiourea?+?2?mol?L?1 HCl. The obtained imprinted particles exhibited excellent selectivity and rapid kinetics process for Rh(III). The relatively selective factor (αr) values of Rh(III)/Ru(III), Rh(III)/Au(III), Rh(III)/Pt(IV), Rh(III)/Ir(IV), Rh(III)/Pd(II) were 26.7, 39.0 29.2, 28.1, 43.7, respectively, which were greater than 1. The detection limit (3σ) of the method was 0.26?µg?L?1. The relative standard deviation of the method was 1.79% for eight replicate determination of 10?µg of Rh3+ in 200?mL water sample. The method was validated by analysing standard reference material (GBW 07293), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace rhodium(III) in geological samples with satisfactory results.  相似文献   

2.
A new surface ion-imprinted composite polymer containing 3-methyl-1-phenyl ?4-(cis-acylbutenoic acid)-2-pyrazolin-5-one as the functional reagent is presented that is capable of extracting and preconcentrating traces of Th(IV) ion prior to its photometric determination. Parameters affecting the recovery of Th(IV) such as acidity, shaking time, initial concentration of Th(IV), elution condition, sample flow rate, and influence of potentially interfering ions were investigated. The maximum uptake capacity of this material and that of the non-imprinted polymer at pH 4.5 are 56.8 and 26.3?mg?g?1, respectively. Recovery exceeds 95% and is complete within 5?min. A Langmuir isotherm fits the experimental data. The relative selectivity factor for Th(IV)/U(VI), Th(IV)/La(III), and Th(IV)/Ce(III) are 50.8, 78.3, and 82.6, respectively. The relative standard deviation is <2.5%, the detection limit is 0.54???g?L?1 (3??). The imprinted polymer was coupled to spectrophotometry to separate and determine trace levels of Th(IV) in a soil standard material with satisfactory results.
A new surface imprinted composite polymer containing MPABAP as the functional reagent was synthesized, and a relative standard deviation (R.S.D.) less than 2.5% and a detection limit of 0.54???g?L?1 (3??) of the present method under the optimized conditions were obtained.  相似文献   

3.
He Q  Chang X  Wu Q  Huang X  Hu Z  Zhai Y 《Analytica chimica acta》2007,605(2):192-197
A new functional monomer N-(o-carboxyphenyl)maleamic acid (CPMA) was synthesized and chosen for the preparation of surface-grafted ion-imprinted polymers (IIPs) specific for thorium(IV). Polymerizable double bond was introduced to silica gel surface by amidation reaction between -NH2 and maleic anhydride. In the ion-imprinting process, thorium(IV) was complexed with the carboxyl groups, then was imprinted in the polymers grafted to the silica gel surface. The imprinted Th(IV) was removed with 3 mol L−1 HCl. The obtained imprinted particles exhibited excellent selectivity and rapid kinetics process for Th(IV). The relatively selective factor (αr) values of Th(IV)/La(III), Th(IV)/Ce(III), Th(IV)/Nd(III), Th(IV)/U(VI), and Th(IV)/Zr(IV) were 85.7, 88.9, 26.6, 64.4, and 433.8, respectively, which were greater than 1. The precision (R.S.D.), the detection limit (3σ), and the quantification limit (10σ) of the method were 1.9%, 0.51 ng mL−1 and 1.19 ng mL−1, respectively. The prepared IIPs as solid-phase extractants were successfully applied for the preconcentration of trace thorium in natural and certified samples prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES) with satisfactory results.  相似文献   

4.
A new Fe(III)-imprinted amino-functionalized silica gel sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Fe(III) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Compared with non-imprinted polymer particles, the ion-imprinted polymers (IIPs) had higher selectivity and adsorption capacity for Fe(III). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Fe(III) was 25.21 and 5.10 mg g−1, respectively. The largest selectivity coefficient of the Fe(III)-imprinted sorbent for Fe(III) in the presence of Cr(III) was over 450. The relatively selective factor (αr) values of Fe(III)/Cr(III) were 49.9 and 42.4, which were greater than 1. The distribution ratio (D) values of Fe(III)-imprinted polymers for Fe(III) were greatly larger than that for Cr(III). The detection limit (3σ) was 0.34 μg L−1. The relative standard deviation of the method was 1.50% for eight replicate determinations. The method was validated by analyzing two certified reference materials (GBW 08301 and GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace iron in plants and water samples with satisfactory results.  相似文献   

5.
We have prepared Th(IV) ion-imprinted polymers, which can be used for the selective preconcentration of Th(IV) ions, represented by uranium and lanthanides. N-methacryloyl-(l)-glutamic acid (MAGA) was chosen as the complexing monomer. In the first step, Th(IV) was complexed with MAGA and the Th(IV)-imprinted poly[ethylene glycol dimethacrylate-N-methacryloyl-(l)-glutamic acid] (Poly(MAGA-EDMA)) beads were synthesized by suspension polymerization. After that, the template Th(IV) ions were removed using 8.0 M HNO3 solution. The breakthrough capacity was 40.44 mg Th(IV)/g beads. The relative selectivity coefficients of imprinted beads were 68, 97 and 116 for UO22+, La3+ and Ce3+, times greater than non-imprinted matrix, respectively. The Th(IV)-imprinted beads could be used many times without decreasing their breakthrough capacities significantly.  相似文献   

6.
A new Cu(II) ion-imprinted sorbent was synthesized by a surface imprinting technique and characterized by FT-IR and SEM. Compared to the non-imprinted sorbent, the Cu(II) ion-imprinted sorbent had a higher adsorption capacity and selectivity for Cu(II). The static adsorption capacity of the Cu(II) ion-imprinted sorbent and non-imprinted sorbent for Cu(II) were 84.5 and 46.5 μmol?g?1, respectively. The best selectivity coefficient over Zn(II) or Cd(II) ion was over 12. The relative selectivity coefficients of the sorbent for Cu(II) in the presence of Zn(II) and Cd(II) were 13 and 35, respectively. Furthermore, the new sorbent possessed a fast kinetics for Cu(II) sorption from aqueous solution with saturation time of <30 min, and could be used repeatedly. The standard deviation for 11 replicate determinations of 0.5 mg?L?1 Cu(II) was 0.8%. This new Cu(II) ion-imprinted sorbent can be used as an effective solid-phase extraction material for the selective preconcentration and separation of Cu(II).  相似文献   

7.
Jiang N  Chang X  Zheng H  He Q  Hu Z 《Analytica chimica acta》2006,577(2):225-231
A new Ni(II)-imprinted amino-functionalized silica gel sorbent with excellent selectivity for nickel(II) was prepared by an easy one-step reaction by combining a surface imprinting technique for selective solid-phase extraction (SPE) of trace Ni(II) in water samples prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Compared with non-imprinted polymer particles, the ion-imprinted polymers (IIPs) had higher selectivity and adsorption capacity for Ni(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Ni(II) was 12.61 and 4.25 mg g−1, respectively. The relatively selective factor (αr) values of Ni(II)/Cu(II), Ni(II)/Co(II), Ni(II)/Zn(II) and Ni(II)/Pd(II) were 45.99, 32.83, 43.79 and 28.36, which were greater than 1. The distribution ratio (D) values of Ni(II)-imprinted polymers for Ni(II) were greatly larger than that for Cu(II), Co(II), Zn(II) and Pd(II). The detection limit (3σ) was 0.16 ng mL−1. The relative standard deviation of the method was 1.48% for eight replicate determinations. The method was validated by analyzing two certified reference materials (GBW 08618 and GBW 08402), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace nickel in plants and water samples with satisfactory results.  相似文献   

8.
A new Pb(II)-imprinted amino-functionalized silica gel sorbent was synthesized by an easy one-step reaction by combining a surface imprinting technique for selective solid-phase extraction of trace Pb(II) prior to its determination by inductively coupled plasma optical emission spectrometry. The Pb(II)-imprinted amino-functionalized silica gel sorbent was characterized by Fourier transform infrared spectroscopy. Compared to non-imprinted polymer particles, the ion-imprinted polymers had higher selectivity and adsorption capacity for Pb(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Pb(II) was 19.66 and 6.20 mg g?1, respectively. The largest selectivity coefficient of the Pb(II)-imprinted sorbent for Pb(II) in the presence of Cd(II) was over 450. The relative selectivity (α r) values of Pb(II)/Cd(II) were 49.3 and 46.3, which were greater than 1. The distribution ratio (D) values of Pb(II)-imprinted polymers for Pb(II) were much larger than that for Cd(II). The detection limit (3σ) was 0.20 μg L?1. The relative standard deviation was 2.0% for 11 replicate determinations. The method was validated for the analysis three certified reference materials (GBW 08301, GBW 08504, GBW 08511), and the results are in good agreement with standard values. The method was also successfully applied to the determination of trace lead in plants and water samples with satisfactory results.  相似文献   

9.
A novel dual-ligand reagent (2Z)-N,N′-bis(2-aminoethylic)but-2-enediamide, was synthesized and applied to prepare metal ion-imprinted polymers (IIPs) materials by ionic imprinted technique for selective solid-phase extraction (SPE) of trace Cd(II) from aqueous solution. In the first step, Cd(II) formed coordination linkage with the two ethylenediamine groups of the synthetic monomer. Then the complex was copolymerized with pentaerythritol triacrylate (crosslinker) in the presence of 2,2′-azobisisobutyronitrile as initiator. Subsequently, the imprinted Cd(II) was completely removed by leaching the dried and powdered materials particles with 0.5 M HCl. The obtained IIPs particles exhibited excellent selectivity for target ion. The distribution ratio (D) values of Cd(II)-IIPs for Cd(II) were greatly larger than that for Cu(II), Zn(II) and Hg(II). The relative selective factor (αr) values of Cd(II)/Cu(II), Cd(II)/Zn(II) and Cd(II)/Hg(II) were 25.5, 35.3 and 62.1. The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cd(II) was 32.56 and 6.30 mg g−1, respectively. Moreover, the times of adsorption equilibration and complete desorption were remarkably short. The prepared Cd(II)-IIPs were shown to be promising for solid-phase extraction coupled with inductively coupled plasma atomic emission spectrometry (ICP-AES) for the determination of trace Cd(II) in real samples. The precision (R.S.D.) and detection limit (3σ) of the method were 2.4% and 0.14 μg L−1, respectively. The column packed with Cd(II)-IIPs was good enough for Cd(II) separation in matrixes containing components with similar chemical behaviour such as Cu(II), Zn(II) and Hg(II).  相似文献   

10.
A surface molecular imprinting technology was developed to adsorb Ce(III) ions that showed much higher adsorption affinity and selectivity for than for other metal ions. The batch adsorption process was studied with respect to effects of pH value, residence time, temperature, and initial concentration of Ce(III) ion. The maximum adsorption capacity is 43 mg g?1 at an initial Ce(III) concentration of 300 mg L?1 and at a sorbent dosage of 1.0 g L?1. A Langmuir isotherm fits the experimental data. The imprinted sorbent exhibits a much higher separation and selectivity for the target imprinted ion than the non-imprinted polymer. Cerium ion can be desorbed with 1M hydrochloric acid solution which is also proven by scanning electron microoscopy and X-ray diffraction experiments. The limit of detection is 37 ng mL?1. The sorbent has been applied to the determination of trace cerium in different environmental samples with satisfactory results.  相似文献   

11.
A new gallium (Ga(III)) ion-imprinted multi-walled carbon nanotubes (CNTs) composite sorbent was synthesized by a surface imprinting technique. The Ga(III) ion-imprinted/multi-walled carbon nanotubes (Ga(III)-imprinted/CNTs) sorbent was characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), nitrogen adsorption experiment, static adsorption experiment, and solid-phase extraction (SPE) experiment. The effects of sample volume, sample pH, washing and elution conditions on the extraction of Ga(III) ion from real sample were studied in detail. The imprinted sorbent offered a fast kinetics for the adsorption of Ga(III). The maximum static adsorption capacity of the imprinted sorbent towards was 58.8 μmol g−1. The largest selectivity coefficient for Ga(III) in the presence of Al(III) was over 57.3. Compared with non-imprinted sorbent, the imprinted sorbent showed good imprinting effect for Ga(III) ion, the imprinting factor (α) was 2.6, the selectivity factor (β) was 2.4 and 2.9 for Al(III) and Zn(II), respectively. The developed imprinted SPE method was applied successfully to the detection of trace Ga(III) ion in fly ash samples with satisfactory results.  相似文献   

12.
A simple and fast voltammetric method based on a new electrode composed of carbon paste electrode/bifunctional hybrid ion imprinted polymer (CPE/IIP) was developed for the quantification of Cd2+ in water samples. The voltammetric measurements by Differential Pulse Voltammetry were performed by using CPE containing 11.0 mg of IIP under phosphate buffer solution at concentration 0.1 mol L?1 and pH 6.5. The electrochemical method was carried out by Cd2+ preconcentration at ?1.2 V during 210 s, followed by anodic stripping. The performance of IIP towards Cd2+ determination was evaluated by comparison to non-imprinted polymer, whose detectability of IIP was much higher (45%). The sensitivity of the sensor was found to be 0.0105 µA/µg L?1. The limits of detection and limits of quantification were found to be 4.95 μg L?1 and 16.4 μg L?1, respectively. The developed method was successfully applied to Cd2+ determination in mineral, tap and lake water samples, whose results are in agreement with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) used as reference analytical technique. According to achieved results, the developed method can be used for routine analysis of quality control of water samples from different sources.  相似文献   

13.
The present work proposes the use of a novel extractant-impregnated resin (EIR) as an adsorbent in trace separation and pre-concentration of U(VI) and Th(IV) ions. The new EIR was prepared by impregnating carminic acid onto Amberlite XAD-16 resin beads. The morphology of new EIR was studied by BET surface area measurements and SEM micrographs. A column packed with CA/XAD-16 was used for selective separation and pre-concentration of the metal ions. Maximum adsorption of Th(IV) and U(VI) ions occurred at pHs of 3.50–5.75 and 3.75–6.50, respectively. The adsorbed metals could be eluted sequentially using 0.55?mol?L?1 HCl for U(VI) and 2.25?mol?L?1 HCl for Th(IV). The dynamic capacity of EIR was found to be 0.832 and 0.814?mmol?g?1 for Th(IV) and U(VI), respectively. The tolerance limit of some foreign ions was also studied. The proposed method showed a good performance in analyzing geological reference materials and a synthetic seawater sample. Furthermore, the above procedure was successfully employed for the analysis of natural water samples.  相似文献   

14.
Grafting from polymerisation technique has been used to prepare Th(IV) ion-imprinted polyvinyl sulfonate (IIPVS)-bonded silica particles. The graft polymerisation of vinyl sulfonate (VS) on the surface of silica particles was achieved in aqueous medium through thermal decomposition of surface-bound azo initiators (60°C) in the presence of thorium ion. The prepared material was characterised by Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. The entrapped template ion was then removed using 2 M HCl. The experimental batch rebinding data were successfully described by the Langmuir–Freundlich model. The prepared material was then packed to a PTFE micro-column (20 mm × 3.0 mm, id) to evaluate its efficiency in column operations prior to determination by inductively coupled plasma-mass spectrometry (ICP-MS). The limit of detection of the method and breakthrough capacity of the column was evaluated as 0.074 µg L?1 and 0.83 mg g?1, respectively. The selectivity of the prepared polymer towards Th(IV) ion was investigated in the presence of some foreign competitor ions, including U(VI). Finally, the proposed method has been used to determine Th(IV) ion in real samples.  相似文献   

15.
A sensitive and selective method has been developed to determine Cr(III) and total Cr in natural water samples by ICP-AES with a Cr(III)-imprinted aminopropyl-functionalised silica gel adsorbent. The Cr(III)-imprinted and non-imprinted adsorbent were prepared by an easy one-step reaction with a surface imprinting technique. Their maximum static adsorption capacities for Cr(III) were 11.12 mg g?1 and 3.81 mg g?1, respectively. The relative selectivity factors (α r) for Cr(III)/Co(II), Cr(III)/Au(III), Cr(III)/Ni(II), Cr(III)/Cu(II), Cr(III)/Zn(II), and Cr(III)/Cr(VI), were 377, 21.4, 15.4, 27.7, 26.4, and 31.9, respectively. Under the optimal conditions, Cr(III) can be absorbed quantitatively, but Cr(VI) was not retained. Total chromium was obtained after reducing Cr(VI) to Cr(III) with hydroxyammonium chloride. The detection limit (3σ) for Cr(III) was 0.11 ng mL?1. The relative standard deviation was 1.2%. The proposed method has been validated by analysing two certified reference materials and successfully applied to the determination and speciation of chromium in natural water samples with satisfactory results.  相似文献   

16.
《Analytical letters》2012,45(18):2896-2913
Abstract

A highly selective and effective method for the purification and preconcentration of norfloxacin (NFX) in seawater samples was developed based on molecularly imprinted solid-phase extraction (MISPE). The molecularly imprinted polymer was synthesized by precipitation polymerization. Methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were used as the functional monomer and crosslinker, respectively. The resulting molecularly imprinted polymer (MIP) showed high adsorption for NFX and was selective for its solid-phase extraction. An offline MISPE method followed by high performance liquid chromatography with diode array detection was established for the determination of NFX in seawater. The recoveries of spiked seawater samples using the MISPE columns were satisfactorily higher than 77.6%. The relative standard deviation was less than 5.60%, and the limit of detection was 0.027?μg L?1. Four seawater samples obtained from the Bohai Sea were analyzed, and NFX was found only at one location at a concentration of 0.280?μg L?1.  相似文献   

17.
Solid-phase extraction (SPE) columns packed with materials based on molecularly imprinted polymers (MIPs) were used to develop selective separation and preconcentration for Ni(II) ion from aqueous solutions. SPE is more rapid, simple and economical method than the traditional liquid-liquid extraction. MIPs were used as column sorbent to increase the grade of selectivity in SPE columns. In this study, we have developed a polymer obtained by imprinting with Ni(II) ion as a ion-imprinted SPE sorbent. For this purpose, NI(II)-methacryloylhistidinedihydrate (MAH/Ni(II)) complex monomer was synthesized and polymerized with cross-linking ethyleneglycoldimethacrylate to obtain [poly(EGDMA-MAH/Ni(II))]. Then, Ni(II) ions were removed from the polymer getting Ni(II) ion-imprinted sorbent. The MIP-SPE preconcentration procedure showed a linear calibration curve within concentration range from 0.3 to 25 ng/ml and the detection limit was 0.3 ng/ml (3 s) for flame atomic absorption spectrometry (FAAS). Ni(II) ion-imprinted microbeads can be used several times without considerable loss of adsorption capacity. When the adsorption capacity of nickel imprinted microbeads were compared with non-imprinted microbeads, nickel imprinted microbeads have higher adsorption capacity. The Kd (distribution coefficient) values for the Ni(II)-imprinted microbeads show increase in Kd for Ni(II) with respect to both Kd values of Zn(II), Cu(II) and Co(II) ions and non-imprinted polymer. During that time Kd decreases for Zn(II), Cu(II) and Co(II) ions and the k′ (relative selectivity coefficient) values which are greater than 1 for imprinted microbeads of Ni(II)/Cu(II), Ni(II)/Zn(II) and Ni(II)/Co(II) are 57.3, 53.9, and 17.3, respectively. Determination of Ni(II) ion in sea water showed that the interfering matrix had been almost removed during preconcentration. The column was good enough for Ni determination in matrixes containing similar ionic radii ions such as Cu(II), Zn(II) and Co(II).  相似文献   

18.
A novel sensor for detection of trace gallium ion [Ga(III)] was created by stepwise modification of a gold electrode with β‐cyclodextrin (β‐CD)/multi‐walled carbon nanotubes (MWCNTs) and an ion imprinted polymer (IIP). The sensor surface morphology was characterized by scanning electron microscopy. The electrochemical performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The sensor displayed excellent selectivity towards the target Ga(III) ion. Meanwhile, the introduced MWCNTs displayed noticeable catalytic activity, and β‐CD demonstrated significant enrichment capacity. A linear calibration curve was obtained covering the concentration range from 5.0×10?8 to 1.0×10?4 mol·L?1, with a detection limit of 7.6×10?9 mol·L?1. The proposed sensor was successfully applied to detect Ga(III) in real urine samples.  相似文献   

19.
A novel method has been reported for 2,6-dichlorophenol using surface-enhanced Raman scattering (SERS). SiO2/gold composites were selected as the SERS substrates to provide the response of gold nanoparticles. Molecular imprinting was subsequently used for the development of a specific detector to 2,6-dichlorophenol with precipitation polymerization. The molecularly imprinted polymer provided sensitive and selective SERS detection for the determination of 2,6-dichlorophenol. The intensity and concentration obeyed a linear relationship from 1?×?10?5 to 1?×?10?9?mol?L?1 2,6-dichlorophenol. The sensitivity of SERS with the molecularly imprinted polymers provides a promising approach for practical analysis.  相似文献   

20.
Chemical sensors relying on graphene-based materials have been widely used for electrochemical determination of metal ions and have demonstrated excellent signal amplification. This study reports an electrochemically reduced graphene oxide (ERGO)/mercury film (HgF) nanocomposite-modified pencil graphite electrode (PGE) prepared through successive electrochemical reduction of graphene oxide (GO) sheets and an in situ plated HgF. The ERGO-PG-HgFE, in combination with dimethylglyoxime (DMG) and square-wave adsorptive cathodic stripping voltammetry (SW-AdCSV), was evaluated for the determination of Ni2+ in tap and natural river water samples. A single-step electrode pre-concentration approach was employed for the in situ Hg-film electroplating, metal-chelate complex formation, and non-electrolytic adsorption at –0.7 V. The current response due to nickel-dimethylglyoxime [Ni(II)-DMG2] complex reduction was studied as a function of experimental paratmeters including the accumulation potential, accumulation time, rotation speed, frequency and amplitude, and carefully optimized for the determination of Ni2+ at low concentration levels (μg?L?1) in pH 9.4 of 0.1 M NH3–NH4Cl buffer. The reduction peak currents were linear with the Ni2+ concentration between 2 and 16?μg?L?1. The limits of detection and quantitation were 0.120?±?0.002?µg?L?1 and 0.401?±?0.007?µg?L?1 respectively, for the determination of Ni2+ at an accumulation time of 120?s. The ERGO-PG-HgFE further demonstrated a highly selective stripping response toward Ni2+ determination compared to Co2+. The electrode was found to be sufficiently sensitive to determine metal ions in water samples at 0.1?µg?L?1, well below the World Health Organization standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号