首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A numerical scheme has been developed for computing fluid flow and heat transfer in periodically repeating geometries. Unstructured solution-adaptive meshes are used in a cell-centred finite volume formulation. The SIMPLE algorithm is used for pressure‒velocity coupling. For periodic flows the static pressure is decomposed into a periodic component and one that varies linearly in the streamwise direction. The latter is computed from the imposition of overall mass balance at the periodic boundary. A subiteration between the periodic pressure correction equation and the correction to the linear component is used. For heat transfer a formulation using the physical rather than the scaled temperature is employed. The scheme is applied to both laminar and turbulent computations of periodic flow and heat transfer in a variety of heat exchanger geometries; comparison with published computations and experimental data is found to be satisfactory. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
The need for three-dimensional, nonintrusive field measurements in the area of heat transfer and fluid flows grows very rapidly, and at this time there are very few experimental techniques that can be used for such a purpose. Axial tomography is a promising technique for accurate quantitative measurements for a variety of heat transfer and fluid flow problems. It has already been tested and practiced in a number of applications, including medical scanning technology. The technique is based on Radon's original work and reconstructs a three-dimensional field from its two-dimensional projections (integrated measurements) obtained at different view angles. This review highlights some of the most important methods used in tomography and their applications to experimental heat transfer and fluid flow studies.  相似文献   

3.
Accurate and reliable dimensionless heat transfer characteristic is very essential for the analysis of heat exchangers. It is also required for the rating and sizing problems of heat exchangers. One of the important experimental methods used to determine the heat transfer coefficient between the heat transfer surface of the heat exchanger and the flowing fluid is transient test techniques. The transient test techniques are usually employed to establish Colburn factor versus Reynolds number characteristics of a high NTU heat exchanger surfaces like compact or matrix heat exchangers. In those situations, a single-blow test, where only one fluid is used, is employed to conduct the transient test. The transient technique may have the fluid inlet temperature having a step change, periodic or an arbitrary rise/drop. In this paper, various transient test techniques that are used for the determination of heat transfer characteristics of high NTU heat exchanger surfaces are discussed.  相似文献   

4.
Single-blow test data are often used as the basis for fundamental convective heat transfer correlations. However, if the heat transfer model used to relate the measured temperature history to an avergge heat transfer coefficient does not accurately describe the experiment, then the accuracy of the data may be low.

The results of simulations are presented that quantify the error in the estimated heat transfer coefficient due to specific common mismatches between the model and the experiment. The areas of mismatches include inlett fluid temper history, longitudinal conduction in the solid, variable local convective coefficient, and effective core mass.

One symptom of a mismatch between the model and the experiment is that different criteria for comparing the measured and predicted temperature histories may yield different estimates for the performance of the same heat exchanger. The results obtained using direct temperature history and derivative and integral evaluation criteria are compared. It is shown that even if two different crit yield similar estimates for the average heat transfer coefficient, these estimates may be far from correct.

The results presented in this paper lead to the recommendation that singl-blow facilities be calibrated with tests on a core of known performance to demonstrate the appropriateness of the model as well as the accuracy of the measurements and thus establish a minimum level of confidence in new data.  相似文献   


5.
Tube inserts are used as heat transfer enhancement tool for both retrofit and new design of shell and tube heat exchangers. This paper discusses and reviews the characteristics and performance of twisted tapes. The theory and application are also addressed. Industrial case study was selected to illustrate the behaviour effect that the twisted tapes impose at various laminar, transition and turbulent flow regions. This effect was demonstrated by changing the inside tube diameter and twist ratio through evaluating selected exchanger design parameters such as: local heat transfer coefficient, friction factor and pressure drop. Testing the exponent powers for Re and Pr at both laminar and turbulent regions were carried out. General design considerations are outlined for the use of twisted tapes in shell and tube heat exchangers.  相似文献   

6.
The steady-state conjugated turbulent heat transfer with axial conduction in the wall and convection boundary conditions is solved with the generalized integral transform technique for the flow of Newtonian fluid in parallel-plate duct. A lumped wall model that neglects transverse temperature gradients in the solid but that takes into account the axial heat conduction along the wall is adopted. Highly accurate results are presented for the fluid bulk and wall temperatures and Nusselt number. The effects of the conjugation parameter, Biot number, and the dimensionless channel length on Nusselt number and fluid bulk and wall temperatures are systematically investigated.  相似文献   

7.
The results of an experimental study of a temperature field and its statistical characteristics in turbulent water flow upon a sudden change of heat generation in the channel wall are reported. Measurements were performed in 5 mm × 40 mm, 10 mm × 40 mm, and 20 mm × 40 mm channels in the regions of thermal stabilization and stabilized heat transfer at Reynolds numbers of (0.8–6.8) × 104. The measurement results are generalized using a dimensionless time scale. The results of the calculation of heat transfer coefficients at unsteady heat transfer are presented.  相似文献   

8.
Both the steady state and transient response of the Nusselt number to variations in Reynolds number over the range 1 to 40 are given by the analysis of a time dependent numerical simulation of a hot-wire anemometer transducer described here. Transducer response can be modelled suitably by considering the system to consist of a phase independent non-linearity followed by a non-linear differential equation whose coefficient (approximate time constant) is Nusselt number dependent. Errors associated with slip flow and free convection constrain the minimum size of a hot-wire which may be used in calibration anemometry while the wire thermal inertia and, to a lesser extent, the response of the Nusselt number to Reynolds number limits the use of large diameter wires. Thus, although the tendency has been to use finer and finer wires, the basic fluid mechanics suggests that a compromise in the choice of the wire diameter is appropriate. Thus development of even more sophisticated hot-wire anemometer control systems as well as accurate calibration techniques for measurement in flows containing large amplitude high frequency turbulence is required  相似文献   

9.
A model is proposed for the momentum eddy diffusivity induced by free stream turbulence intensity and integral length scale. The eddy diffusivity model is applied to the stagnation point of a cylinder situated in a steady uniform crossflow in the presence of free stream turbulence. A numerical solution of the governing steady-state momentum and energy equations with the proposed eddy diffusivity model yielded results for the skin friction coefficient and the Nusselt number. Agreement between the numerical predictions of this work and experimental data is very good. The experimental data concerning the unsteady stagnation point heat transfer under the combined influence of free stream velocity oscillations and turbulence intensity have been successfully correlated by means of a new turbulence parameter  相似文献   

10.
This paper considers laminar flow heat transfer in tube assemblies. The main interest is focused on the virtually unexplored cases of heat transfer under conditions of fully-developed flow inclined to the axes of the tubes and of purely transverse developing flow. The limiting cases of purely axial or purely transverse fully-developed flow are also examined. In all cases, the thermal boundary condition on the tubes is constant heat flux. Governing differential equations are expressed in terms of curvilinear-orthogonal coordinates and solved using finite-differences. Results are compared with available theoretical and experimental data. The effect of the transverse component of the flow on the temperature distribution is found to remain very strong even in nearly-axial flows and therefore considerably higher heat transfer coefficients are exhibited by a nearly-axial flow than a purely axial one.  相似文献   

11.
Numerical and experimental investigations on the influence of nonuniform initial temperature on the transient heat transfer measurements are presented in this paper. The case of film cooling is investigated. When the initial wall temperature is nonuniform, the results of heat transfer coefficient and film cooling effectiveness, which are calculated by the equations derived with constant initial temperature, could deviate from the true values badly, especially in the condition of short test duration. Using initial wall temperature which is higher than the real values causes the results of heat transfer coefficient and film cooling effectiveness lower than the true values. And lower initial wall temperature produces higher results of heat transfer coefficient and film cooling effectiveness. However, when the initial temperature distribution in the region where conduction plays more influence on the wall surface temperature than the convection is well fitted by the cubic polynomial, accurate results can be obtained by the new equation which is derived from 1-D unsteady conduction model with nonuniform initial wall temperature. Some suggestions are also introduced to reduce the influence of nonuniform initial temperature when the initial temperature distribution is difficult to obtain and the equation derived from constant initial temperature has to be employed.  相似文献   

12.
The volumetric heat transfer coefficients (hv) between cellular ceramics and a stream of air were measured using the single-blow transient experimental technique in conjunction with an inverse analysis. Test specimen made of mullite, YZA, SiC, cordierite and cordierite with LS-2 coating was studied. The number of pores per centimeter (PPC) ranged from 4 to 26 and the specimen thickness ranged from 6 to 12 mm. Based on the experimental data, the volumetric heat transfer coefficients were generalized by developing Nusselt number vs. Reynolds number correlations of the form Nuv=C Rem for the materials studied. The effects of pore length-scale and specimen thickness on the volumetric heat transfer coefficients are presented and discussed.  相似文献   

13.
This paper presents the experimental results of the local heat transfer for falling film evaporation of water sheet by solving the inverse heat conduction problem. It is shown that the local heat transfer coefficients increase by increasing the air flow velocity, the film liquid flow rate or decreasing the inlet bulk film temperature. Correlations for the mean heat transfer coefficients in the absence of superimposed flow for the stagnation region, the thermally developed region and the bottom of the heated cylinder are proposed.  相似文献   

14.
Since the heat transfer performance of syngas cooler affects the efficiency of the power generating system with integrated coal gasification combined cycle (IGCC) directly, it is important to obtain the heat transfer characteristics of high-pressure syngas in the cooler. Heat transfer in convection cooling section of pressurized coal gasifier with the membrane helical coils and membrane serpentine tubes under high pressure is experimentally investigated. High pressure single gas (He or N2) and their mixture (He + N2) gas serve as the test media in the test pressure range from 0.5 MPa to 3.0 MPa. The results show that the convection heat transfer coefficient of high pressure gas is influenced by the working pressure, gas composition and symmetry of flow around the coil, of which the working pressure is the most significant factor. The average convection heat transfer coefficients for various gases in heat exchangers are systematically analyzed, and the correlations between Nu and Re for two kinds of membrane heat exchangers are obtained. The heat transfer coefficient of heat exchanger with membrane helical coils is greater than that of the membrane serpentine-tube heat exchanger under the same conditions. The heat transfer coefficient increment of the membrane helical-coil heat exchanger is greater than that of the membrane serpentine-tube heat exchanger with the increase of gas pressure and velocity.  相似文献   

15.
16.
17.
利用经过台车碰撞试验验证的铝合金薄壁管材料参数对比研究了方形、六边形、八边形和圆形的多种不同截面形状薄壁管在轴向动态冲击下的吸能特性。结合多目标优化算法对吸能特性较好的八边形多胞管进行了参数优化,并提出了一种新的优化设计方案。该方案将多胞管外管、肋板和内管的厚度分别作为优化设计变量,通过与将多胞管取统一厚度作为设计变量的传统方案进行对比发现,采用该方案对八边形多胞管进行优化后明显提高了其在相同压缩力峰值下的能量吸收效率。  相似文献   

18.
19.
A finite element method is used to solve the full Navier-Stokes and energy equations for the problems of laminar flow and heat transfer characteristics of air around three isothermal heated horizontal cylinders in a staggered tube bank and around four isothermal heated horizontal cylinders in an in line tube bank. The variations of surface shear stress, pressure and Nusselt number are obtained over the entire cylinder surface, including the zone beyond the separation point. The predicted values of total drag, pressure drag and friction drag coefficients, average Nusselt number, and the plots of velocity flow fields and isotherms are also presented.  相似文献   

20.
Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency. The project supported by the National Natural Science Foundation of China (19889209) and Russian Foundation for Basic Research (97-02-16943)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号