首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We present improved virtual orbital (IVO) complete active space (CAS) configuration interaction (IVO‐CASCI) and IVO‐CASCI‐based multireference Møller–Plesset perturbation theory (MRMPPT) calculations with an aim to elucidate the electronic structure of tetramethyleneethane (TME) in its lowest singlet and triplet state and to quantify their order and extent of splitting. The potential surfaces of singlet and triplet states for the twisting of TME are also studied. We found that the triplet state is higher in energy than the singlet one in the whole range of twisting angles with the energy gap minimum at a twisting angle of about 45°. Harmonic vibrational frequencies of TME have also been calculated for both the states. We also report the ground to first excited triplet state transition energies. Our results are analyzed with respect to the results available in the literature to illustrate the efficacy of our methods employed. We also demonstrate that the spin character of the ground state of disjoint, TME‐like diradicals can be manipulated by using appropriate selection of annulenic spacer to separate the allyl groups of TME.  相似文献   

2.
We have performed high‐level electronic structure computations on the most important species of the CHnP systems n = 1–3 to characterize them and provide reliable information about the equilibrium and vibrationally averaged molecular structures, rotational constants, vibrational frequencies (harmonic and anharmonic), formation enthalpies, and vertical excitation energies. Those chemical systems are intermediates for several important reactions and also prototypical phosphorus‐carbon compounds; however, they are often elusive to experimental detection. The present results significantly complement their knowledge and can be used as an assessment of the experimental information when available. The explicitly correlated coupled‐cluster RCCSD(T)‐F12 method has been used for geometry optimizations and vibrational frequency calculations. Vibrational configuration interaction theory has been used to account for anharmonicity effects. Basis‐set limit extrapolations have been carried out to determine accurate thermochemical quantities. Electronic excited states have been calculated with coupled‐cluster approaches and also by means of the multireference configuration interaction method. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
4.
Two novel isomers of BeO4 with the structures OBeOOO and OBe(O3) in the electronic triplet state have been prepared as well as the known disuperoxide complex Be(O2)2 in solid noble‐gas matrices. We also report the synthesis of the oxygen‐rich bis(ozonide) complex Be(O3)2 in the triplet state which has a D2d equilibrium geometry. The molecular structures were identified by infrared absorption spectroscopy with isotopic substitutions as well as quantum chemical calculations.  相似文献   

5.
The electronic structure of spiro[4.4]nonatetraene 1 as well as that of its radical anion and cation were studied by different spectroscopies. The electron‐energy‐loss spectrum in the gas phase revealed the lowest triplet state at 2.98 eV and a group of three overlapping triplet states in the 4.5 – 5.0 eV range, as well as a number of valence and Rydberg singlet excited states. Electron‐impact excitation functions of pure vibrational and triplet states identified various states of the negative ion, in particular the ground state with an attachment energy of 0.8 eV, an excited state corresponding to a temporary electron attachment to the 2b1 MO at an attachment energy of 2.7 eV, and a core excited state at 4.0 eV. Electronic‐absorption spectroscopy in cryogenic matrices revealed several states of the positive ion, in particular a richly structured first band at 1.27 eV, and the first electronic transition of the radical anion. Vibrations of the ground state of the cation were probed by IR spectroscopy in a cryogenic matrix. The results are discussed on the basis of density‐functional and CASSCF/CASPT2 quantum‐chemical calculations. In their various forms, the calculations successfully rationalized the triplet and the singlet (valence and Rydberg) excitation energies of the neutral molecule, the excitation energies of the radical cation, its IR spectrum, the vibrations excited in the first electronic absorption band, and the energies of the ground and the first excited states of the anion. The difference of the anion excitation energies in the gas and condensed phases was rationalized by a calculation of the Jahn‐Teller distortion of the anion ground state. Contrary to expectations based on a single‐configuration model for the electronic states of 1 , it is found that the gap between the first two excited states is different in the singlet and the triplet manifold. This finding can be traced to the different importance of configuration interaction in the two multiplicity manifolds.  相似文献   

6.
In this computational work, we assessed the performance of ab initio multireference (MR) methods for the calculation of vertical excitation energies of five nucleobases: adenine, guanine, cytosine, thymine and uracil. In total, we have studied 38 singlet and 30 triplet excited states. Where possible we used the multireference configuration interaction (MRCI) method as a reference for various flavors of multireference perturbation theory to second order. In particular, we have benchmarked CASPT2, NEVPT2 and XMCQDPT2. For CASPT2, we have analyzed the single‐state, multistate (MS) and extended MS variants. In addition, we have assessed the effect of the ionization potential electron affinity (IPEA) shift. For NEVPT2, we have used the partially and the strongly contracted variants. Further, we have tested the commonly used RI‐CC2, RI‐ADC2 and EOM‐CCSD methods. Generally, we observe the following trends for singlet excited states: NEVPT2 is the closest MR method to MRCISD+Q, closely followed by CASPT2 with the default IPEA shift. The same trend is observed for triplet states, although NEVPT2 and CASPT2‐IPEA are getting closer. Interestingly, the n, π* singlet excited states were described more accurately than π, π* excited states, while for triplet states the trend is inverted except for NEVPT2. This work is an important benchmark for future photochemical investigations.  相似文献   

7.
Thioxanthonation of fluorenone resulted in a new visible light initiator namely, indeno [1,2‐b]thioxanthene‐7,13‐dione (TX–FN). The detailed photophysical properties of the singlet and the triplet excited states of TX–FN are reported using steady‐state absorption, fluorescence, and phosphorescence, as well as laser flash photolysis techniques. Photoinitiated polymerization of MMA with TX–FN and CQ has been investigated in the presence and absence of a co‐initiator (MDEA). Additionally, Photo‐DSC studies were performed both in mono‐ and multiacrylate systems with TX–FN and parent compounds TX and FN. The obtained results were compared for formulations consisting of CQ. At low initiator concentrations, the conversions were lower than those obtained with TX–FN. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1012–1019  相似文献   

8.
The electronic structure and ground‐state molecular properties of Pu and Am tetracarbides have been investigated by relativistic multireference calculations using CASSCF/CASPT2 theory as well as by density functional theory in conjunction with relativistic pseudopotentials. The CASSCF/CASPT2 treatment has been extended by spin–orbit coupling effects for selected species using the CAS state‐interaction method. The five atoms can form various structural isomers, from which 12 ones have been identified in our study. The electronic ground state in both molecules corresponds to a planar fan‐type structure of C2v symmetry, in which the actinide atom is connected to a bent C4 moiety. The other structures are much higher in energy, the ones computed in this study appear between 250 and 1050 kJ/mol. The bonding characteristics in the most relevant structures have been analyzed on the basis of the valence molecular orbitals and natural bond orbital analysis. The most stable structures have been characterized by their spectroscopic (vibrational and electron) properties. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
The structural and electronic properties of fluorene‐phenylene copolymer (FP)n, n = 1–4 were studied by means of quantum chemical calculations based on density functional theory (DFT) and time dependent density functional theory (TD‐DFT) using B3LYP functional. Geometry optimizations of these oligomers were performed for the ground state and the lowest singlet excited state. It was found that (FP)n is nonplanar in its ground state while the electronic excitations lead to planarity in its S1 state. Absorption and fluorescence energies were calculated using TD‐B3LYP/SVP and TD‐B3LYP/SVP+ methods. Vertical excitation energies and fluorescence energies were obtained by extrapolating these values to infinite chain length, resulting in extrapolated values for vertical excitation energy of 2.89 and 2.87 eV, respectively. The S1 ← S0 electronic excitation is characterized as a highest occupied molecular orbital to lowest unoccupied molecular orbital transition and is distinguishing in terms of oscillator strength. Fluorescence energies of (FP)n calculated from TD‐B3LYP/SVP and TD‐B3LYP/SVP+ methods are 2.27 and 2.26 eV, respectively. Radiative lifetimes are predicted to be 0.55 and 0.51 ns for TD‐B3LYP/SVP and TD‐B3LYP/SVP+ calculations, respectively. These fundamental information are valuable data in designing and making of promising materials for LED materials. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

10.
The second‐order multireference perturbation theory using an optimized partitioning, denoted as MROPT(2), is applied to calculations of various molecular properties—excitation energies, spectroscopic parameters, and potential energy curves—for five molecules: ethylene, butadiene, benzene, N2, and O2. The calculated results are compared with those obtained with second‐ and third‐order multireference perturbation theory using the traditional partitioning techniques. We also give results from computations using the multireference configuration interaction (MRCI) method. The presented results show very close resemblance between the new method and MRCI with renormalized Davidson correction. The accuracy of the new method is good and is comparable to that of second‐order multireference perturbation theory using Møller‐Plesset partitioning. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1390–1400, 2003  相似文献   

11.
Isotope substitutions are usually conceived to play a marginal role on the structure and bonding pattern of molecules. However, a recent study [Angew. Chem. Int. Ed. 2014 , 53, 13706–13709; Angew. Chem. 2014, 126, 13925–13929 ] further demonstrates that upon replacing a proton with a positively charged muon, as the lightest radioisotope of hydrogen, radical changes in the nature of the structure and bonding of certain species may take place. The present report is a primary attempt to introduce another example of structural transformation on the basis of the malonaldehyde system. Accordingly, upon replacing the proton between the two oxygen atoms of malonaldehyde with the positively charged muon a serious structural transformation is observed. By using the ab initio nuclear‐electronic orbital non‐Born–Oppenheimer procedure, the nuclear configuration of the muon‐substituted species is derived. The resulting nuclear configuration is much more similar to the transition state of the proton transfer in malonaldehyde rather than to the stable configuration of malonaldehyde. The comparison of the “atoms in molecules” (AIM) structure of the muon‐substituted malonaldehyde and the AIM structure of the stable and the transition‐state configurations of malonaldehyde also unequivocally demonstrates substantial similarities of the muon‐substituted malonaldehyde to the transition state.  相似文献   

12.
A new mechanism of anionic polymerization of butadiene is proposed. In the elementary chemical act, the “living” polymer–monomer complex is excited into the low‐lying triplet state. This state has the character of charge (electron) and cation (Li+ or Na+) transfer from the terminal unit of the active center to the monomer molecule. In the framework of this concept, the probability of chemical bond formation is determined by spin density on radical centers of reagent molecules. Semiempirical and ab initio 6‐31G** quantum‐chemical calculations showed stable interaction between components of the complex in the ground electronic state (9–11 kcal/mol) and low energy levels of triplet excited states (<14 kcal/mol). This new approach is shown to be useful in the analysis of polymerization kinetics and the microstructure of polybutadiene depending on the cation type and the ion pair state. The mechanism of cis‐trans isomerization in the terminal unit of the living polymer consists in concerted rotation about the Cβ? Cγ bond and the migration of Li between Cα and Cγ atoms. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

13.
Density Functional Theory (DFT) calculations at the B3LYP/6‐31+G* level have been performed on 5‐thiabicyclo[2.1.1]hex‐2‐ene S‐oxide derivatives. The geometrical and electronic properties of the compounds have been analyzed in order to explain the favored stability of the exo configuration. Isodesmic reactions at the Gaussian‐G2 theory yielded the exo conformer as the most stable one. Moreover, the NMR chemical shift parameters (GIAO method) together with the Atoms in Molecules theory reveal an stabilization of the S atom with the double bond for the exo configuration, in agreement with the experimental results. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 322–327, 2000  相似文献   

14.
The unprecedented dependence of final charge separation efficiency as a function of donor–acceptor interaction in covalently‐linked molecules with a rectilinear rigid oligo‐p‐xylene bridge has been observed. Optimization of the donor–acceptor electronic coupling remarkably inhibits the undesirable rapid decay of the singlet charge‐separated state to the ground state, yielding the final long‐lived, triplet charge‐separated state with circa 100 % efficiency. This finding is extremely useful for the rational design of artificial photosynthesis and organic photovoltaic cells toward efficient solar energy conversion.  相似文献   

15.
To perform spin‐orbit coupling calculations on atoms and molecules, good zeroth‐order wavefunctions are necessary. Here, we present the software development of the Monte Carlo Configuration Interaction (MCCI) method, to enable calculation of such properties, where MCCI iteratively constructs a multireference wavefunction using a stochastic procedure. In this initial work, we aim to establish the efficacy of this technique in predicting the splitting of otherwise degenerate energy levels on a range of atoms and small diatomic molecules. It is hoped that this work will subsequently act as a gateway toward using this method to investigate singlet‐triplet interactions in larger multireference molecules. We show that MCCI can generate very good results using highly compact wavefunctions compared to other techniques, with no prior knowledge of important orbitals. Higher‐order relativistic effects are neglected and spin‐orbit coupling effects are incorporated using first‐order degenerate perturbation theory with the Breit‐Pauli Hamiltonian and effective nuclear charges in the one‐electron operator. Results are obtained and presented for B, C, O, F, Si, S, and Cl atoms and OH, CN, NO, and C2 diatomic radicals including spin‐orbit coupling constants and the relative splitting of the lowest energy degenerate state for each species. Convergence of MCCI to the full configuration interaction result is demonstrated on the multireference problem of stretched OH. We also present results from the singlet‐triplet interaction between the and both the and states of the O2 molecule. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
The structures and energies of the noble gas containing anions FNgO- (Ng = He, Ar, and Kr) have been calculated by high-level ab initio calculations. The FNgO- anions were found to be deep-energy minima at the singlet electronic state, and their energies are significantly lower than those at the triplet state. High dissociation energy barriers to Ng + OF- were also predicted. The unexpected stability of the FNgO- was due to the dramatic ion-induced O=Ng bond formation. The calculated results suggested possible experimental identification of the anionic species and even some related "ionic compounds" under cryogenic conditions.  相似文献   

17.
The bond‐stretch isomers are characterized by a principal change in the bond‐length with the rest of the molecule being unaltered. The electronic structure regulates the bond stretch isomerism phenomenon in which has been investigated with density functional theory, ab initio CASSCF, highly efficient n‐electron valence state perturbation theory and multireference configuration interaction calculations. Two isomers are distinguished on different potential energy surfaces and the corresponding avoided crossing is also studied in details. The bonding pattern in two isomers are analysed through adaptive natural density partitioning analysis and quantum theory of atoms in molecules analysis. The bonds in both the isomers primarily involve the 2p orbitals, which overlap face‐to‐face in long‐bond isomer. Whereas, in‐plane π‐bonding occurs at the short‐bond isomer leading to unusual bent bond. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
The energetics and photodynamics of carbonaceous molecular bearings with discrete molecular structures were investigated. A series of supramolecular bearings comprising belt‐persistent tubular cycloarylene and fullerene molecules accepted photonic stimuli to afford charge‐separated species via a photoinduced electron transfer process. The energy conversion processes associated with the photoexcitation, however, differed depending on the molecular structure. A π‐lengthened tubular molecule allowed for the emergence of an intermediary triplet excited state at the bearing, which should lead to an energy conversion to thermal energy. On the other hand, low‐lying charge‐separated species induced by an endohedral lithium ion in fullerene enabled back electron transfer processes to occur without involving triplet excited species. The structure–photodynamics relationship was analyzed in terms of the Marcus theory to reveal a large electronic coupling in this dynamic supramolecular system.  相似文献   

19.
The first high level ab initio quantum‐chemical calculations of potential energy surfaces (PESs) for low‐lying singlet excited states of norbornadiene in the gas phase are presented. The optimization of the stationary points (minima and conical intersections) and the recalculation of the energies were performed using the multireference configuration interaction with singles (MR‐CIS) and the multiconfigurational second‐order perturbation (CASPT2) methods, respectively. It was shown that the crossing between valence V2 and Rydberg R1 states close to the Franck–Condon (FC) point permits an easy population switch between these states. Also, a new deactivation path in which the doubly excited state with (π3)2 configuration (DE) has a prominent role in photodeactivation from the R1 state due to the R1/DE and the DE/V1 conical intersections very close to the R1 and DE minima, respectively, was proposed. Subsequent deactivation from the V1 to the ground state goes through an Olivucci–Robb‐type conical intersection that adopts a rhombic distorted geometry. The deactivation path has negligible barriers, thereby making ultrafast radiationless decay to the ground state possible. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Ab initio all‐electron computations have been carried out for Ce+ and CeF, including the electron correlation, scalar relativistic, and spin–orbit coupling effects in a quantitative manner. First, the n‐electron valence state second‐order multireference perturbation theory (NEVPT2) and spin–orbit configuration interaction (SOCI) based on the state‐averaged restricted active space multiconfigurational self‐consistent field (SA‐RASSCF) and state‐averaged complete active space multiconfigurational self‐consistent field (SA‐CASSCF) wavefunctions have been applied to evaluations of the low‐lying energy levels of Ce+ with [Xe]4f15d16s1 and [Xe]4f15d2 configurations, to test the accuracy of several all‐electron relativistic basis sets. It is shown that the mixing of quartet and doublet states is essential to reproduce the excitation energies. Then, SA‐RASSCF(CASSCF)/NEVPT2 + SOCI computations with the Sapporo(‐DKH3)‐2012‐QZP basis set were carried out to determine the energy levels of the low‐lying electronic states of CeF. The calculated excitation energies, bond length, and vibrational frequency are shown to be in good agreement with the available experimental data. © 2018 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号