首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 676 毫秒
1.
The direct and enantioselective γ‐alkylation of α‐substituted α,β‐unsaturated aldehydes proceeding under dienamine catalysis is described. We have found that the Seebach modification of the diphenyl‐prolinol silyl ether catalyst in combination with saccharin as an acidic additive promotes an SN1 alkylation pathway, while ensuring complete γ‐site selectivity and a high stereocontrol. Theoretical and spectroscopic investigations have provided insights into the conformational behavior of the covalent dienamine intermediate derived from the condensation of 2‐methylpent‐2‐enal and the chiral amine. Implications for the mechanism of stereoinduction are discussed.  相似文献   

2.
We describe herein an unprecedented asymmetric α‐amination of β‐ketocarbonyls under aerobic conditions. The process is enabled by a simple chiral primary amine through the coupling of a catalytic enamine ester intermediate and a nitrosocarbonyl (generated in situ) derived from N‐hydroxycarbamate. The reaction features high chemoselectivity and excellent enantioselectivity for a broad range of substrates.  相似文献   

3.
The enantioselective tandem reaction of β,γ‐unsaturated α‐ketoesters with β‐alkynyl ketones was realized by a bimetallic catalytic system of achiral AuΙΙΙ salt and chiral N,N′‐dioxide‐MgΙΙ complex. The cycloisomerization of β‐alkynyl ketone and asymmetric intermolecular [4+2] cycloaddition with β,γ‐unsaturated α‐ketoesters subsequently occurred, providing an efficient and straightforward access to chiral multifunctional 6,6‐spiroketals in up to 97 % yield, 94 % ee and >19/1 d.r. Besides, a catalytic cycle was proposed based on the results of control experiments.  相似文献   

4.
A series of novel C2‐symmetric chiral pyridine β‐amino alcohol ligands have been synthesized from 2,6‐pyridine dicarboxaldehyde, m‐phthalaldehyde and chiral β‐amino alcohols through a two‐step reaction. All their structures were characterized by 1H NMR, 13C NMR and IR. Their enantioselective induction behaviors were examined under different conditions such as the structure of the ligands, reaction temperature, solvent, reaction time and catalytic amount. The results show that the corresponding chiral secondary alcohols can be obtained with high yields and moderate to good enantiomeric excess. The best result, up to 89% ee, was obtained when the ligand 3c (2S,2′R)‐2,2′‐((pyridine‐2,6‐diylbis(methylene))bisazanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was used in toluene at room temperature. The ligand 3g (2S,2′R)‐2,2′‐((1,3‐phenylenebis(methylene))bis(azanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was prepared in which the pyridine ring was replaced by the benzene ring compared to 3c in order to illustrate the unique role of the N atom in the pyridine ring in the inductive reaction. The results indicate that the coordination of the N atom of the pyridine ring is essential in the asymmetric induction reaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Oxazolidin‐2‐ones are widely used as protective groups for 1,2‐amino alcohols and chiral derivatives are employed as chiral auxiliaries. The crystal structures of four differently substituted oxazolidinecarbohydrazides, namely N′‐[(E)‐benzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12N3O3, (I), N′‐[(E)‐2‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (II), (4S)‐N′‐[(E)‐4‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (III), and (4S)‐N′‐[(E)‐2,6‐dichlorobenzylidene]‐N,3‐dimethyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C13H13Cl2N3O3, (IV), show that an unexpected mild‐condition racemization from the chiral starting materials has occurred in (I) and (II). In the extended structures, the centrosymmetric phases, which each crystallize with two molecules (A and B) in the asymmetric unit, form A+B dimers linked by pairs of N—H...O hydrogen bonds, albeit with different O‐atom acceptors. One dimer is composed of one molecule with an S configuration for its stereogenic centre and the other with an R configuration, and possesses approximate local inversion symmetry. The other dimer consists of either R,R or S,S pairs and possesses approximate local twofold symmetry. In the chiral structure, N—H...O hydrogen bonds link the molecules into C(5) chains, with adjacent molecules related by a 21 screw axis. A wide variety of weak interactions, including C—H...O, C—H...Cl, C—H...π and π–π stacking interactions, occur in these structures, but there is little conformity between them.  相似文献   

6.
A highly enantioselective tandem Michael/ring‐closure reaction of α,β‐unsaturated pyrazoleamides and amidomalonates has been accomplished in the presence of a chiral N,N′‐dioxide–Yb(OTf)3 complex (Tf: trifluoromethanesulfonyl) to give various substituted chiral glutarimides with high yields and diastereo‐ and enantioselectivities. Moreover, this methodology could be used for gram‐scale manipulation and was successfully applied to the synthesis of (?)‐paroxetine. Further nonlinear and HRMS studies revealed that the real catalytically active species was a monomeric L ‐PMe2 –Yb3+ complex. A plausible transition state was proposed to explain the origin of the asymmetric induction.  相似文献   

7.
A highly enantioselective formal conjugate allyl addition of allylboronic acids to β,γ‐unsaturated α‐ketoesters has been realized by employing a chiral NiII/N,N′‐dioxide complex as the catalyst. This transformation proceeds by an allylboration/oxy‐Cope rearrangement sequence, providing a facile and rapid route to γ‐allyl‐α‐ketoesters with moderate to good yields (65–92 %) and excellent ee values (90–99 % ee). The isolation of 1,2‐allylboration products provided insight into the mechanism of the subsequent oxy‐Cope rearrangement reaction: substrate‐induced chiral transfer and a chiral Lewis acid accelerated process. Based on the experimental investigations and DFT calculations, a rare boatlike transition‐state model is proposed as the origin of high chirality transfer during the oxy‐Cope rearrangement.  相似文献   

8.
An easily available and efficient chiral N,N′‐dioxide–nickel(II) complex catalyst has been developed for the direct catalytic asymmetric aldol reaction of α‐isothiocyanato imide with aldehydes which produces the products in morderate to high yields (up to 98 %) with excellent diastereo‐ (up to >99:1 d.r.) and enantioselectivities (up to >99 % ee). A variety of aromatic, heteroaromatic, α,β‐unsaturated, and aliphatic aldehydes were found to be suitable substrates in the presence of 2.5 mol % L ‐proline‐derived N,Ndioxide L5 –nickel(II) complex. This process was air‐tolerant and easily manipulated with available reagents. Based on experimental investigations, a possible transition state has been proposed to explain the origin of reactivity and asymmetric inductivity.  相似文献   

9.
An enantioselective synthesis of α‐aminoketone derivatives were readily available through a tandem insertion–[1,3] O‐to‐C rearrangement reaction. The rhodium salt and chiral N,N′‐dioxide‐indium(III) complex make up relay catalysis, which enables the O?H insertion of benzylic alcohols to N‐sulfonyl‐1,2,3‐triazoles, and asymmetric [1,3]‐rearrangement of amino enol ether intermediates, subsequently. Preliminary mechanistic studies suggested that the [1,3] O‐to‐C rearrangement step proceeded through an ion pair pathway.  相似文献   

10.
Enantioseparation of α,α‐diphenyl‐2‐pyrrolidinemethanol (D2PM) and methylphenidate (MPH; Ritalin®) using (R)‐(?)‐4‐(N,N‐dimethylaminosulfonyl)‐7‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐2,1,3‐benzoxadiazole as the chiral derivatization reagent has been achieved for the first time, and a simple, reliable detection method using HPLC with fluorescence detection has been developed. D2PM and MPH have been derivatized with (R)‐(?)‐4‐(N,N‐dimethylaminosulfonyl)‐7‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐2,1,3‐benzoxadiazole at 55°C for 15 min. The derivatives of D2PM and MPH have been separated, completely and rapidly, using a reversed‐phase system within 16 min (resolution factor (Rs)=1.60 and 2.53, respectively). The detection limits of (R)‐ and (S)‐D2PM were found to be 6.8 and 13 ng/mL, respectively, and those of D ‐ and L ‐threo‐MPH were 61 and 66 ng/mL, respectively (S/N=3). The proposed method was successfully applied to the analysis of rat plasma, where the rats were separately dosed with D2PM and MPH (Ritalin).  相似文献   

11.
Depsipeptides and cyclodepsipeptides are analogues of the corresponding peptides in which one or more amide groups are replaced by ester functions. Reports of crystal structures of linear depsipeptides are rare. The crystal structures and conformational analyses of four depsipeptides with an alternating sequence of an α,α‐disubstituted α‐amino acid and an α‐hydroxy acid are reported. The molecules in the linear hexadepsipeptide amide in (S)‐Pms‐Acp‐(S)‐Pms‐Acp‐(S)‐Pms‐Acp‐NMe2 acetonitrile solvate, C47H58N4O9·C2H3N, ( 3b ), as well as in the related linear tetradepsipeptide amide (S)‐Pms‐Aib‐(S)‐Pms‐Aib‐NMe2, C28H37N3O6, ( 5a ), the diastereoisomeric mixture (S,R)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2/(R,S)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2 (1:1), C32H41N3O6, ( 5b ), and (R,S)‐Mns‐Acp‐(S,R)‐Mns‐Acp‐NMe2, C30H37N3O6, ( 5c ) (Pms is phenyllactic acid, Acp is 1‐aminocyclopentanecarboxylic acid and Mns is mandelic acid), generally adopt a β‐turn conformation in the solid state, which is stabilized by intramolecular N—H…O hydrogen bonds. Whereas β‐turns of type I (or I′) are formed in the cases of ( 3b ), ( 5a ) and ( 5b ), which contain phenyllactic acid, the torsion angles for ( 5c ), which incorporates mandelic acid, indicate a β‐turn in between type I and type III. Intermolecular N—H…O and O—H…O hydrogen bonds link the molecules of ( 3a ) and ( 5b ) into extended chains, and those of ( 5a ) and ( 5c ) into two‐dimensional networks.  相似文献   

12.
Asymmetric transfer hydrogenation was applied to a wide range of racemic aryl α‐alkoxy‐β‐ketoesters in the presence of well‐defined, commercially available, chiral catalyst RuII–(Np‐toluenesulfonyl‐1,2‐diphenylethylenediamine) and a 5:2 mixture of formic acid and triethylamine as the hydrogen source. Under these conditions, dynamic kinetic resolution was efficiently promoted to provide the corresponding syn α‐alkoxy‐β‐hydroxyesters derived from substituted aromatic and heteroaromatic aldehydes with a high level of diastereoselectivity (diastereomeric ratio (d.r.)>99:1) and an almost perfect enantioselectivity (enantiomeric excess (ee)>99 %). Additionally, after extensive screening of the reaction conditions, the use of RuII‐ and RhIII‐tethered precatalysts extended this process to more‐challenging substrates that bore alkenyl‐, alkynyl‐, and alkyl substituents to provide the corresponding syn α‐alkoxy‐β‐hydroxyesters with excellent enantiocontrol (up to 99 % ee) and good to perfect diastereocontrol (d.r.>99:1). Lastly, the synthetic utility of the present protocol was demonstrated by application to the asymmetric synthesis of chiral ester ethyl (2S)‐2‐ethoxy‐3‐(4‐hydroxyphenyl)‐propanoate, which is an important pharmacophore in a number of peroxisome proliferator‐activated receptor α/γ dual agonist advanced drug candidates used for the treatment of type‐II diabetes.  相似文献   

13.
A novel amine auxiliary for the asymmetric synthesis of α‐substituted N‐methylsulfonamides is described. The reaction of 4‐([1,1′‐biphenyl]‐4‐yl)‐2,2‐dimethyl‐1,3‐dioxan‐5‐amine ( 16 ) with various aliphatic sulfonyl chlorides afforded the corresponding sulfonamides, which were lithiated and subsequently reacted with electrophiles to give the corresponding products in high yields and good‐to‐excellent asymmetric inductions (de 83–95%). Racemization‐free cleavage of the auxiliary led to the α‐alkylated N‐methylsulfonamides in acceptable yields and high enantiomer purities (ee 91 to ≥98).  相似文献   

14.
β‐Substituted chiral γ‐aminobutyric acids feature important biological activities and are valuable intermediates for the synthesis of pharmaceuticals. Herein, an efficient catalytic enantioselective approach for the synthesis of β‐substituted γ‐aminobutyric acid derivatives through visible‐light‐induced photocatalyst‐free asymmetric radical conjugate additions is reported. Various β‐substituted γ‐aminobutyric acid analogues, including previously inaccessible derivatives containing fluorinated quaternary stereocenters, were obtained in good yields (42–89 %) and with excellent enantioselectivity (90–97 % ee). Synthetically valuable applications were demonstrated by providing straightforward synthetic access to the pharmaceuticals or related bioactive compounds (S)‐pregabalin, (R)‐baclofen, (R)‐rolipram, and (S)‐nebracetam.  相似文献   

15.
The catalytic asymmetric aziridination of imines and diazo compounds (AZ reaction) mediated by boroxinate catalysts derived from the VANOL and VAPOL ligands was investigated with chiral imines derived from five different chiral, disubstituted, methyl amines. The strongest matched and mismatched reactions with the two enantiomers of the catalyst were noted with disubstituted methyl amines that had one aromatic and one aliphatic substituent. The synthetic scope for the AZ reaction was examined in detail for α‐methylbenzyl amine for cis‐aziridines from α‐diazo esters and for trans‐aziridines from α‐diazo acetamides. Optically pure aziridines could be routinely obtained in good yields and with high diastereoselectivity and the minor diastereomer (if any) could be easily separated. The matched case for cis‐aziridines involved the (R)‐amine with the (S)‐ligand, but curiously, for trans‐aziridines the matched case involved the (R)‐amine with the (R)‐ligand for imines derived from benzaldehyde and n‐butanal, and the (R)‐amine with the (S)‐ligand for imines derived from the bulkier aliphatic aldehydes pivaldehyde and cyclohexane carboxaldehyde.  相似文献   

16.
The absolute configuration of the naturally occurring isomers of 6β‐benzoyloxy‐3α‐tropanol ( 1 ) has been established by the combined use of chiral high‐performance liquid chromatography with electronic circular dichroism detection and optical rotation detection. For this purpose (±)‐ 1 , prepared in two steps from racemic 6‐hydroxytropinone ( 4 ), was subjected to chiral high‐performance liquid chromatography with electronic circular dichroism and optical rotation detection allowing the online measurement of both chiroptical properties for each enantiomer, which in turn were compared with the corresponding values obtained from density functional theory calculations. In an independent approach, preparative high‐performance liquid chromatography separation using an automatic fraction collector, yielded an enantiopure sample of OR(+)‐ 1 whose vibrational circular dichroism spectrum allowed its absolute configuration assignment when the bands in the 1100–950 cm‐1 region were compared with those of the enantiomers of esters derived from 3α,6β‐tropanediol. In addition, an enantiomerically enriched sample of 4 , instead of OR(±)‐ 4 , was used for the same transformation sequence, whose high‐performance liquid chromatography follow‐up allowed their spectroscopic correlation. All evidences lead to the OR(+)‐(1S,3R,5S,6R) and OR(?)‐(1R,3S,5R,6S) absolute configurations, from where it follows that samples of 1 isolated from Knightia strobilina and Erythroxylum zambesiacum have the OR(+)‐(1S,3R,5S,6R) absolute configuration, while the sample obtained from E. rotundifolium has the OR(?)‐(1R,3S,5R,6S) absolute configuration.  相似文献   

17.
The heterospirocyclic N‐methyl‐N‐phenyl‐5‐oxa‐1‐azaspiro[2.4]hept‐1‐e n‐2‐amine (6 ) and N‐(5‐oxa‐1‐azaspiro[2.4]hept‐1‐en‐2‐yl)‐(S)‐proline methyl ester ( 7 ) were synthesized from the corresponding heterocyclic thiocarboxamides 12 and 10 , respectively, by consecutive treatment with COCl2, 1,4‐diazabicyclo[2.2.2]octane, and NaN3 (Schemes 1 and 2). The reaction of these 2H‐azirin‐3‐amines with thiobenzoic and benzoic acid gave the racemic benzamides 13 and 14 , and the diastereoisomeric mixtures of the N‐benzoyl dipeptides 15 and 16 , respectively (Scheme 3). The latter were separated chromatographically. The configurations and solid‐state conformations of all six benzamides were determined by X‐ray crystallography. With the aim of examining the use of the new synthons in peptide synthesis, the reactions of 7 with Z‐Leu‐Aib‐OH to yield a tetrapeptide 17 (Scheme 4), and of 6 with Z‐Ala‐OH to give a dipeptide 18 (Scheme 5) were performed. The resulting diastereoisomers were separated by means of MPLC or HPLC. NMR Studies of the solvent dependence of the chemical shifts of the NH resonances indicate the presence of an intramolecular H‐bond in 17 . The dipeptides (S,R)‐ 18 and (S,S)‐ 18 were deprotected at the N‐terminus and were converted to the crystalline derivatives (S,R)‐ 19 and (S,S)‐ 19 , respectively, by reaction with 4‐bromobenzoyl chloride (Scheme 5). Selective hydrolysis of (S,R)‐ 18 and (S,S)‐ 18 gave the dipeptide acids (R,S)‐ 20 and (S,S)‐ 20 , respectively. Coupling of a diastereoisomeric mixture of 20 with H‐Phe‐OtBu led to the tripeptides 21 (Scheme 5). X‐Ray crystal‐structure determinations of (S,R)‐ 19 and (S,S)‐ 19 allowed the determination of the absolute configurations of all diastereoisomers isolated in this series.  相似文献   

18.
Various optically active (4R)‐alkyloxycarbonyl‐3,3‐dialkyl‐2‐oxetanones as monomers were synthesized from L‐(S)‐malic acid in six steps to prepare a new family of stereopolyesters for biomedical applications. The synthesis began with an esterification followed of a dialkylation in the aim to introduce hydrophobic groups as methyl or reactive group as allyl. Then, a saponification has permitted to obtain the corresponding diacids that reacted with appropriate alcohols to furnish different monoesters. The last and most important step was activation of hydroxyl group of monoesters with the asymmetric carbon configuration inversion according to the Mitsunobu reaction. Thus, this reaction has provided lactones from monoesters with 100% enantiomeric excess which was confirmed by 1H NMR and by the synthesis of corresponding isotactic and semicrystalline homopolyesters. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2586–2597  相似文献   

19.
The crystal and molecular structures of four stereoisomers of tapentadol hydrochloride [systematic name: 3‐(3‐hydroxyphenyl)‐N,N,2‐trimethylpentan‐1‐aminium chloride], C14H24NO+·Cl, a novel analgesic agent, have been determined by X‐ray crystal structure analysis. Resolution of the isomers was carried out by reverse‐phase and chiral high‐performance liquid chromatographic (HPLC) methods. Stereoisomers (I) and (II) crystallize in the monoclinic space group P21, each with two tapentadol cations and two chloride anions in the asymmetric unit, while stereoisomers (III) and (IV) crystallize in the orthorhombic space group P212121, with one tapentadol cation and one chloride anion in the asymmetric unit. The absolute configurations of the four enantiomers were determined unambiguously by X‐ray crystallography. The crystal structures reveal the stereochemistries at the 3‐ethyl and 2‐methyl groups to be R,R, S,S, S,R and R,S in stereoisomers (I)–(IV), respectively. The ethyl and aminopropyl groups adopt different orientations with respect to the phenol ring for (I) and (IV). In all four structures, the chloride ions take part in N—H...Cl and O—H...Cl hydrogen bonds with the tapentadol molecules, resulting in one‐dimensional helical chains in the crystal packing in each case.  相似文献   

20.
Inexpensive acryloyl chloride was converted in 91% overall yield to two derivatives of β‐alanine, (R,R,R)‐ 6 and (R,R,S)‐ 6 , containing two chiral auxiliaries. C‐Alkylation of (R,R,R)‐ and (R,R,S)‐ 6 via a dianion derivative, was performed by direct metallation with 2.2 equiv. of lithium hexamethyldisilazane (LHMDS) in THF at ?78°. C‐Alkylation of (R,R,S)‐ 6 ‐Li2 (‘matched' pair of chiral auxiliaries) afforded the mono‐alkylated products 8 – 11 in 29–96% yield and 54–95% stereoselectivity. Employment of LiCl as an additive generally increased stereoselectivities, whereas the effect of HMPA as a cosolvent was erratic. Chemical correlation of the major diastereoisomer from the alkylation reactions with (S)‐α‐alkyl‐β‐alanine ( 12 – 15 ) showed that addition of the electrophile preferentially takes place on the enolate's Si‐face. This conclusion is also supported by molecular‐modeling studies (ab initio HF/3‐21G), which indicate that the lowest‐energy conformation for (R,R,S)‐ 6 ‐Li2 presents the more sterically hindered Re‐face of the enolate. The theoretical studies also predict a determining role for N? Li? O chelation in (R,R,S)‐ 6 ‐Li2, giving rise to an interesting ‘ion‐triplet' configuration for the dilithium dianion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号