首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[Cp*RhIII]‐catalyzed C? H activation of arenes assisted by an oxidizing N? O or N? N directing group has allowed the construction of a number of hetercycles. In contrast, a polar N? O bond is well‐known to undergo O‐atom transfer (OAT) to alkynes. Despite the liability of N? O bonds in both C? H activation and OAT, these two important areas evolved separately. In this report, [Cp*RhIII] catalysts integrate both areas in an efficient redox‐neutral coupling of quinoline N‐oxides with alkynes to afford α‐(8‐quinolyl)acetophenones. In this process the N? O bond acts as both a directing group for C? H activation and as an O‐atom donor.  相似文献   

2.
The oxidative coupling of primary amines with internal alkynes catalyzed by Ru complexes is presented as a general atom‐economy methodology with a broad scope of applications in the synthesis of N‐heterocycles. Reactions proceed through regioselective C?H bond activation in 15 minutes under microwave irradiation or in 24 hours with conventional heating. The synthesis of 2,3,5‐substituted pyridines, benzo[h]isoquinolines, benzo[g]isoquinolines, 8,9‐dihydro‐benzo[de]quinoline, 5,6,7,8‐tetrahydroisoquinolines, pyrido[3,4g]isoquinolines, and pyrido[4,3g]isoquinolines is achievable depending on the starting primary amine used. DFT calculations on a benzylamine substrate support a reaction mechanism that consists of acetate‐assisted C?H bond activation, migratory‐insertion, and C?N bond formation steps that involve 28–30 kcal mol?1. The computational study is extended to additional substrates, namely, 1‐naphthylmethyl‐, 2‐methylallyl‐, and 2‐thiophenemethylamines.  相似文献   

3.
Rollover cyclometalation involves bidentate heterocyclic donors, unusually acting as cyclometalated ligands. The resulting products, possessing a free donor atom, react differently from the classical cyclometalated complexes. Taking advantage of a “rollover”/“retro‐rollover” reaction sequence, a succession of oxidative addition and reductive elimination in a series of platinum(II) complexes [Pt(N,C)(Me)(PR3)] resulted in a rare C(sp2)?C(sp3) bond formation to give the bidentate nitrogen ligands 3‐methyl‐2,2′‐bipyridine, 3,6‐dimethyl‐2,2′‐bipyridine, and 3‐methyl‐2‐(2′‐pyridyl)‐quinoline, which were isolated and characterized. The nature of the phosphane PR3 is essential to the outcome of the reaction. This route constitutes a new method for the activation and functionalization of C?H bond in the C(3) position of bidentate heterocyclic compounds, a position usually difficult to functionalize.  相似文献   

4.
An unprecedented rhodium(III)‐catalyzed regioselective redox‐neutral annulation reaction of 1‐naphthylamine N‐oxides with diazo compounds was developed to afford various biologically important 1H‐benzo[g]indolines. This coupling reaction proceeds under mild reaction conditions and does not require external oxidants. The only by‐products are dinitrogen and water. More significantly, this reaction represents the first example of dual functiaonalization of unactivated a primary C(sp3)? H bond and C(sp2)? H bond with diazocarbonyl compounds. DFT calculations revealed that an intermediate iminium is most likely involved in the catalytic cycle. Moreover, a rhodium(III)‐catalyzed coupling of readily available tertiary aniline N‐oxides with α‐diazomalonates was also developed under external oxidant‐free conditions to access various aminomandelic acid derivatives by an O‐atom‐transfer reaction.  相似文献   

5.
[Pd(P(Ar)(tBu)2)2] ( 1 , Ar=naphthyl) reacts with molecular oxygen to form PdII hydroxide dimers in which the naphthyl ring is cyclometalated and one equivalent of phosphine per palladium atom is released. This reaction involves the cleavage of both C? H and O? O bonds, two transformations central to catalytic aerobic oxidizations of hydrocarbons. Observations at low temperature suggest the initial formation of a superoxo complex, which then generates a peroxo complex prior to the C? H activation step. A transition state for energetically viable C? H activation across a Pd? peroxo bond was located computationally.  相似文献   

6.
An asymmetric unactivated alkene/C? H bond difunctionalization reaction for the concomitant construction of C? CF3 and C? O bonds was realized by using a Cu/Brønsted acid cooperative catalytic system, thus providing facile access to valuable chiral CF3‐containing N,O‐aminals with excellent regio‐, chemo‐, and enantioselectivity. Mechanistic studies revealed that this reaction may proceed by an unprecedented 1,5‐hydride shift involving activation of unactivated alkenes and a radical trifluoromethylation to initiate subsequent enantioselective functionalization of C? H bonds. Control experiments also suggested that chiral Brønsted acid plays multiple roles and not only controls the stereoselectivity but also increases the reaction rate through activation of Togni’s reagent.  相似文献   

7.
A series of 2,4,6‐triarylphosphinines were prepared and investigated in the base‐assisted cyclometalation reaction using [Cp*IrCl2]2 (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) as the metal precursor. Insight in the mechanism of the C? H bond activation of phosphinines as well as in the regioselectivity of the reaction was obtained by time‐dependent 31P{1H} NMR spectroscopy. At room temperature, 2,4,6‐triarylphosphinines instantaneously open the Ir‐dimer and coordinate in an η1‐fashion to the metal center. Upon heating, a dissociation step towards free ligand and an Ir‐acetate species is observed and proven to be a first‐order reaction with an activation energy of ΔEA=56.6 kJ mol?1 found for 2,4,6‐triphenylphosphinine. Electron‐donating substituents on the ortho‐phenyl groups of the phosphorus heterocycle facilitate the subsequent cyclometalation reaction, indicating an electrophilic C? H activation mechanism. The cyclometalation reaction turned out to be very sensitive to steric effects as even small substituents can have a large effect on the regioselectivity of the reaction. The cyclometalated products were characterized by means of NMR spectroscopy and in several cases by single‐crystal X‐ray diffraction. Based on the observed trends during the mechanistic investigation, a concerted base‐assisted metalation–deprotonation (CMD) mechanism, which is electrophilic in nature, is proposed.  相似文献   

8.
Selective oxidative cleavage of a C? C bond offers a straightforward method to functionalize organic skeletons. Reported herein is the oxidative C? C bond cleavage of ketone for C? N bond formation over a cuprous oxide catalyst with molecular oxygen as the oxidant. A wide range of ketones and amines are converted into cyclic imides with moderate to excellent yields. In‐depth studies show that both α‐C? H and β‐C? H bonds adjacent to the carbonyl groups are indispensable for the C? C bond cleavage. DFT calculations indicate the reaction is initiated with the oxidation of the α‐C? H bond. Amines lower the activation energy of the C? C bond cleavage, and thus promote the reaction. New insight into the C? C bond cleavage mechanism is presented.  相似文献   

9.
The aluminum(I) compound NacNacAl (NacNac=[ArNC(Me)CHC(Me)NAr]?, Ar=2,6‐iPr2C6H3, 1 ) shows diverse and substrate‐controlled reactivity in reactions with N‐heterocycles. 4‐Dimethylaminopyridine (DMAP), a basic substrate in which the 4‐position is blocked, induces rearrangement of NacNacAl by shifting a hydrogen atom from the methyl group of the NacNac backbone to the aluminum center. In contrast, C?H activation of the methyl group of 4‐picoline takes place to produce a species with a reactive terminal methylene. Reaction of 1 with 3,5‐lutidine results in the first example of an uncatalyzed, room‐temperature cleavage of an sp2 C?H bond (in the 4‐position) by an AlI species. Another reactivity mode was observed for quinoline, which undergoes 2,2′‐coupling. Finally, the reaction of 1 with phthalazine produces the product of N?N bond cleavage.  相似文献   

10.
Hydrometallation of iPr2N?Ge(CMe3)(C?C?CMe3)2 with H?M(CMe3)2 (M=Al, Ga) affords alkenyl–alkynylgermanes in which the Lewis‐acidic metal atoms are not coordinated by the amino N atoms but by the α‐C atoms of the ethynyl groups. These interactions result in a lengthening of the Ge?C bonds by approximately 10 pm and a comparably strong deviation of the Ge?C?C angle from linearity (154.3(1)°). This unusual behaviour may be caused by steric shielding of the N atoms. Coordination of the metal atoms by the amino groups is observed upon hydrometallation of Et2N?Ge(C6H5)(C?C?CMe3)2, bearing a smaller NR2 group. Strong M?N interactions lead to a lengthening of the Ge?N bonds by 10 to 15 pm and a strong deviation of the M atoms from the MC3 plane by 52 and 47 pm, for Al and Ga, respectively. Dual hydrometallation is achieved only with HAl(CMe3)2. In the product, there is a strong Al?N bond with converging Al?N and Ge?N distances (208 vs. 200 pm) and an interaction of the second Al atom to the phenyl group. Addition of chloride anions terminates the latter interaction while the activated Ge?N bond undergoes an unprecedented elimination of EtN?C(H)Me at room temperature, leading to a germane with a Ge?H bond. State‐of‐the‐art DFT calculations reveal that the unique mechanism comprises the transfer of the amino group from Ge to Al to yield an intermediate germyl cation as a strong Lewis acid, which induces β‐hydride elimination, with chloride binding being crucial for providing the thermodynamic driving force.  相似文献   

11.
[Cp*RhIII]‐catalyzed C H activation of arenes assisted by an oxidizing N O or N N directing group has allowed the construction of a number of hetercycles. In contrast, a polar N O bond is well‐known to undergo O‐atom transfer (OAT) to alkynes. Despite the liability of N O bonds in both C H activation and OAT, these two important areas evolved separately. In this report, [Cp*RhIII] catalysts integrate both areas in an efficient redox‐neutral coupling of quinoline N‐oxides with alkynes to afford α‐(8‐quinolyl)acetophenones. In this process the N O bond acts as both a directing group for C H activation and as an O‐atom donor.  相似文献   

12.
A copper‐catalyzed aerobic oxidative amidation reaction of inert C?C bonds with tertiary amines has been developed for the synthesis of tertiary amides, which are significant units in many natural products, pharmaceuticals, and fine chemicals. This method combines C?C bond activation, C?N bond cleavage, and C?H bond oxygenation in a one‐pot protocol, using molecular oxygen as the sole oxidant without any additional ligands.  相似文献   

13.
In the title compound, C29H30N6O, the naphthyridine moiety is planar with a dihedral angle between the fused rings of 1.9 (1)°. The phenol ring is nearly coplanar, while the diethyl­amino­phenyl substituent is orthogonal to the central naphthyridine ring and the pyrrolidine ring makes an angle of 11.2 (1)° with it. The O atom of the hydroxy substituent is coplanar with the phenyl ring to which it is attached. The molecular structure is stabilized by a C—H?N‐type intramolecular hydrogen bond and the packing is stabilized by intermolecular C—H?π, O—H?N and N—H?O hydrogen bonds.  相似文献   

14.
An ortho‐selective C? F bond borylation between N‐heterocycle‐substituted polyfluoroarenes and Bpin‐Bpin with simple and commercially available [Rh(cod)2]BF4 as a catalyst is now reported. The reaction proceeds under mild reaction conditions with high efficiency and broad substrate scope, even toward monofluoroarene, thus providing a facile access to a wide range of borylated fluoroarenes that are useful for photoelectronic materials. Preliminary mechanistic studies reveal that a RhIII/V catalytic cycle via a key intermediate rhodium(III) hydride complex [(H)RhIIILn(Bpin)] may be involved in the reaction.  相似文献   

15.
Described herein is a manganese‐catalyzed dehydrogenative [4+2] annulation of N? H imines and alkynes, a reaction providing highly atom‐economical access to diverse isoquinolines. This transformation represents the first example of manganese‐catalyzed C? H activation of imines; the stoichiometric variant of the cyclomanganation was reported in 1971. The redox neutral reaction produces H2 as the major byproduct and eliminates the need for any oxidants, external ligands, or additives, thus standing out from known isoquinoline synthesis by transition‐metal‐catalyzed C? H activation. Mechanistic studies revealed the five‐membered manganacycle and manganese hydride species as key reaction intermediates in the catalytic cycle.  相似文献   

16.
The direct and controlled activation of a C(sp3)?H bond adjacent to an O atom is of particular synthetic value for the conventional derivatization of ethers or alcohols. In general, stoichiometric amounts of an oxidant are required to remove an electron and a hydrogen atom of the ether for subsequent transformations. Herein, we demonstrate that the activation of a C?H bond next to an O atom could be achieved under oxidant‐free conditions through photoredox‐neutral catalysis. By using a commercial dyad photosensitizer (Acr+‐Mes ClO4?, 9‐mesityl‐10‐methylacridinium perchlorate) and an easily available cobaloxime complex (Co(dmgBF2)2?2 MeCN, dmg=dimethylglyoxime), the nucleophilic addition of β‐keto esters to oxonium species, which is rarely observed in photocatalysis, leads to the corresponding coupling products and H2 in moderate to good yields under visible‐light irradiation. Mechanistic studies suggest that both isochroman and the cobaloxime complex quench the electron‐transfer state of this dyad photosensitizer and that benzylic C?H bond cleavage is probably the rate‐determining step of this cross‐coupling hydrogen‐evolution transformation.  相似文献   

17.
A previously elusive RuII‐catalyzed N?N bond‐based traceless C?H functionalization strategy is reported. An N‐amino (i.e., hydrazine) group is used for the directed C?H functionalization with either an alkyne or an alkene, affording an indole derivative or olefination product. The synthesis features a broad substrate scope, superior atom and step economy, as well as mild reaction conditions.  相似文献   

18.
Carbon–carbon bond reductive elimination from gold(III) complexes are known to be very slow and require high temperatures. Recently, Toste and co‐workers have demonstrated extremely rapid C?C reductive elimination from cis‐[AuPPh3(4‐F‐C6H4)2Cl] even at low temperatures. We have performed DFT calculations to understand the mechanistic pathway for these novel reductive elimination reactions. Direct dynamics calculations inclusive of quantum mechanical tunneling showed significant contribution of heavy‐atom tunneling (>25 %) at the experimental reaction temperatures. In the absence of any competing side reactions, such as phosphine exchange/dissociation, the complex cis‐[Au(PPh3)2(4‐F‐C6H4)2]+ was shown to undergo ultrafast reductive elimination. Calculations also revealed very facile, concerted mechanisms for H?H, C?H, and C?C bond reductive elimination from a range of neutral and cationic gold(III) centers, except for the coupling of sp3 carbon atoms. Metal–carbon bond strengths in the transition states that originate from attractive orbital interactions control the feasibility of a concerted reductive elimination mechanism. Calculations for the formation of methane from complex cis‐[AuPPh3(H)CH3]+ predict that at ?52 °C, about 82 % of the reaction occurs by hydrogen‐atom tunneling. Tunneling leads to subtle effects on the reaction rates, such as large primary kinetic isotope effects (KIE) and a strong violation of the rule of the geometric mean of the primary and secondary KIEs.  相似文献   

19.
The formation of C?C bonds embodies the core of organic chemistry because of its fundamental application in generation of molecular diversity and complexity. C?C bond‐forming reactions are well‐known challenges. To achieve this goal through direct functionalization of C?H bonds in both of the coupling partners represents the state‐of‐the‐art in organic synthesis. Oxidative C?C bond formation obviates the need for prefunctionalization of both substrates. This Minireview is dedicated to the field of C?C bond‐forming reactions through direct C?H bond functionalization under completely metal‐free oxidative conditions. Selected important developments in this area have been summarized with representative examples and discussions on their reaction mechanisms.  相似文献   

20.
Stoichiometric C?H bond activation of arenes mediated by iron carbonyls was reported by Pauson as early as in 1965, yet the catalytic C?H transformations have not been developed. Herein, an iron‐catalyzed annulation of N?H imines and internal alkynes to furnish cis‐3,4‐dihydroisoquinolines is described, and represents the first iron‐carbonyl‐catalyzed C?H activation reaction of arenes. Remarkablely, this is also the first redox‐neutral [4+2] annulation of imines and alkynes proceeding by C?H activation. The reaction also features only cis stereoselectivity and excellent atom economy as neither base, nor external ligand, nor additive is required. Experimental and theoretical studies reveal an oxidative addition mechanism for C?H bond activation to afford a dinuclear ferracycle and a synergetic diiron‐promoted H‐transfer to the alkyne as the turnover‐determining step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号