首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1‐n‐Butyl‐2,3‐dimethylimidazolium (BMMI) ionic liquids (ILs) associated with different anions undergo H/D exchange preferentially at 2‐Me group of the imidazolium in deuterated solvents. This process is mainly related to the existence of ion pairs rather than the anion basicity. The H/D exchange occurs in solvents (CDCl3 and MeCN for instance) in which intimate contact ion pairs are present and the anion possesses a labile H in its structure, such as hydrogen carbonate and prolinate. In D2O, separated ion pairs are formed and the H/D exchange does not occur. A plausible catalytic cycle is that the IL behaves as a neutral base in the course of all H/D exchange processes. NMR experiments, density functional calculations, and molecular dynamics simulations corroborate these hypotheses.  相似文献   

2.
Ion pair speciation of ionic liquids(ILs) has an important effect on the physical and chemical properties of ILs and recognition of the structure of ion pairs in solution is essential. It has been reported that ion pairs of some ILs can be formed by hydrogen bonding interactions between cations and anions of them. Considering the fact that far-IR(FIR) spectroscopy is a powerful tool in indicating the intermolecular and intramolecular hydrogen bonding, in this work, this spectroscopic technique has been combined with molecular dynamic(MD) simulation and nuclear magnetic resonance hydrogen spectroscopy(~1H NMR) to investigate ion pairs of aprotic ILs [Bmim][NO_3], [BuPy][NO_3], [Pyr_(14)][NO_3], [PP_(14)][NO_3] and [Bu-choline][NO_3] in aqueous IL mixtures. The FIR spectra have been assigned with the aid of density functional theory(DFT) calculations, and the results are used to understand the effect of cationic nature on the structure of ion pairs. It is found that contact ion pairs formed in the neat aprotic ILs by hydrogen bonding interactions between cation and anion, were still maintained in aqueous solutions up to high water mole fraction(say 0.80 for [BuPy][NO3]). When water content was increased to a critical mole fraction of water(say 0.83 for [BuPy][NO3]), the contact ion pairs could be transformed into solvent-separated ion pairs due to the formation of the hydrogen bonding between ions and water. With the further dilution of the aqueous ILs solution, the solvent-separated ion pairs was finally turned into free cations and free anions(fully hydrated cations or anions). The concentrations of the ILs at which the contact ion pairs were transformed into solvent-separated ion pairs and solvent-separated ion pairs were transformed into free ions(fully hydrated ion) were dependent on the cationic structures. These information provides direct spectral evidence for ion pair structures of the aprotic ILs in aqueous solution. MD simulation and ~1H NMR results support the conclusion drawn from FIR spectra investigations.  相似文献   

3.
While N,N′-dialkylimidazolium ionic liquids (ILs) have been well-established as effective solvents for dissolution and processing of cellulose, the detailed mechanism at the molecular level still remains unclear. In this work, we present a combined quantum chemistry and molecular dynamics simulation study on how the ILs dissolve cellulose. On the basis of calculations on 1-butyl-3-methylimidazolium chloride, one of the most effective ILs dissolving cellulose, we further studied the molecular behavior of cellulose models (i.e. cellulose oligomers with degrees of polymerization n = 2, 4, and 6) in the IL, including the structural features and hydrogen bonding patterns. The collected data indicate that both chloride anions and imidazolium cations of the IL interact with the oligomer via hydrogen bonds. However, the anions occupy the first coordination shell of the oligomer, and the strength and number of hydrogen bonds and the interaction energy between anions and the oligomer are much larger than those between cations and the oligomer. It is observed that the intramolecular hydrogen bond in the oligomer is broken under the combined effect of anions and cations. The present results emphasize that the chloride anions play a critically important role and the imidazolium cations also present a remarkable contribution in the cellulose dissolution. This point of view is different from previous one that only underlines the importance of the chloride anions in the cellulose dissolution. The present results improve our understanding for the cellulose dissolution in imidazolium chloride ILs.  相似文献   

4.
It is well known that gas‐phase experiments and computational methods point to the dominance of dispersion forces in the molecular association of hydrocarbons. Estimates or even quantification of these weak forces are complicated due to solvent effects in solution. The dissection of interaction energies and quantification of dispersion interactions is particularly challenging for polar systems such as ionic liquids (ILs) which are characterized by a subtle balance between Coulomb interactions, hydrogen bonding, and dispersion forces. Here, we have used vaporization enthalpies, far‐infrared spectroscopy, and dispersion‐corrected calculations to dissect the interaction energies between cations and anions in aprotic (AILs), and protic (PILs) ionic liquids. It was found that the higher total interaction energy in PILs results from the strong and directional hydrogen bonds between cation and anion, whereas the larger vaporization enthalpies of AILs clearly arise from increasing dispersion forces between ion pairs.  相似文献   

5.
Density functional theory methods in combination with vibrational spectroscopy are used to investigate possible variants of molecular structure of the ion pairs of several imidazolium-based ionic liquids (ILs). Multiple stable structures are determined with the anion positioned (a) near to the C2 atom of the imidazolium ring, (b) between N1 and C5, (c) between N3 and C4, and (d) between C4 and C5. Chloride and bromide anions in vacuum also occupy positions above or below the imidazolium ring, but in the condensed state these positions are destabilized. In comparison with the halides that almost equally occupy the positions (a-d), tetrafluoroborate and hexafluorophosphate anions strongly prefer position (a). The position and the type of the anion influence the conformation of the side chains bound to the imidazolium N1 atom, which are able to adopt in vacuum all usual staggered or eclipsed conformations, although in the liquid state some of the conformations are present only as minor forms if at all. Vibrations of the cations depend both on the conformational changes and on the association with the anion. The formation of the ion pairs influences mainly stretching and out-of-plane vibrations of the imidazolium C-H groups and stretching vibrations of the perfluoroanions. Other modes of the ions retain their individuality and practically do not mix. This allows "interionic" vibrations to be separated and to regard the couple of the ions as an anharmonic oscillator. Such a model correlates the molecular structure of various ILs and their melting points without involving the energy of the interaction between the cations and anions but explains structure-melting point correlations on the grounds of quasy-elastic properties.  相似文献   

6.
Several recent studies of hydroxyl-functionalized ionic liquids (ILs) have shown that cation-cation interactions can be dominating these materials at the molecular level when the anion involved is weakly interacting. The hydrogen bonds between the like ions led to the formation of interesting chain-like, ring-like, or distinct dimeric (i. e. two ion pairs) supermolecular clusters. In the present work, vibrational spectroscopy (ATR-IR and Raman) and density functional theory (DFT) calculations of the hydroxyl-functionalized imidazolium ionic liquid C2OHmimCl indicate that anion-cation hydrogen bonding interactions are dominating, leading to the formation of distinct dimeric ion pair clusters. In this arrangement, the Cl anions function as a bridge between the cations by establishing bifurcated hydrogen bonds with the OH group of one cation and the C(2)-H of another cation. Cation–cation interactions, on the other hand, do not play a significant role in the observed clusters.  相似文献   

7.
The 1H nuclear magnetic resonance (1H-NMR) spectrum is a useful tool for characterizing the hydrogen bonding (H-bonding) interactions in ionic liquids (ILs). As the main hydrogen bond (H-bond) donor of imidazolium-based ILs, the chemical shift (δH2) of the proton in the 2-position of the imidazolium ring (H2) exhibits significant and complex solvents, concentrations and anions dependence. In the present work, based on the dielectric constants (ϵ) and Kamlet-Taft (KT) parameters of solvents, we identified that the δH2 are dominated by the solvents polarity and the competitive H-bonding interactions between cations and anions or solvents. Besides, the solvents effects on δH2 are understood by the structure of ILs in solvents: 1) In diluted solutions of inoizable solvents, ILs exist as free ions and the cations will form H-bond with solvents, resulting in δH2 being independent with anions but positively correlated with βS. 2) In diluted solutions of non-ionzable solvents, ILs exist as contact ion-pairs (CIPs) and H2 will form H-bond with anions. Since non-ionizable solvents hardly influence the H-bonding interactions between H2 and anions, the δH2 are not related to βS but positively correlated with βIL.  相似文献   

8.
The cation–anion and cation–solvent interactions in solutions of the protic ionic liquid (PIL) [Et3NH][I] dissolved in solvents of different polarities are studied by means of far infrared vibrational (FIR) spectroscopy and density functional theory (DFT) calculations. The dissociation of contact ion pairs (CIPs) and the resulting formation of solvent‐separated ion pairs (SIPs) can be observed and analyzed as a function of solvent concentration, solvent polarity, and temperature. In apolar environments, the CIPs dominate for all solvent concentrations and temperatures. At high concentrations of polar solvents, SIPs are favored over CIPs. For these PIL/solvent mixtures, CIPs are reformed by increasing the temperature due to the reduced polarity of the solvent. Overall, this approach provides equilibrium constants, free energies, enthalpies, and entropies for ion‐pair formation in trialkylammonium‐containing PILs. These results have important implications for the understanding of solvation chemistry and the reactivity of ionic liquids.  相似文献   

9.
The structures and ion-pair formation in the ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide are studied by a combination of FTIR measurements and DFT calculations. We could clearly distinguish imidazolium cations that are completely H-bonded to anions from those that are single H-bonded in ion pairs. Ion-pair formation already occurs in the neat IL and rises with temperature. Ion-pair formation is strongly promoted by dilution of the IL in chloroform. In these weakly polar environments ion pairs H-bonded via C(2)H are strongly favored over those H-bonded via C(4,5)H. This finding is in agreement with DFT (gas phase) calculations, which show a preference for ion pairs H-bonded via C(2)H as a result of the acidic C(2)H bond.  相似文献   

10.
Several ionic liquids (ILs) comprising [B(hfip)4]? [hfip=OCH(CF3)2] or [Al(hfip)4]? anions and imidazolium or ammonium cations were prepared and mixed with up to 270 mol % of dimethyl carbonate (DMC). The viscosities, conductivities, and self‐diffusion constants of these mixtures and, where possible, of the neat ILs were measured and compared with common [NTf2]? based ILs and their mixtures with DMC. A tremendous decrease of the viscosities and a likewise increase of the conductivities and diffusion constants can be achieved for all classes of ILs. However, the order of the conductivities is partially reversed in the diffusion data. This is probably due to the low dielectric constant of DMC and the, thus, favored ion pairing, as evidenced, for example, by the calculated ionicities. Altogether, our data show that the chemically robust, but high‐melting and more viscous [B(hfip)4]? ILs might be candidates for electrolytes when mixed with suitable molecular solvents.  相似文献   

11.
The anionic Yanovskii adducts of 1,3,5-trinitro- and 1,3-dinitrobenzenes, 1,3-dinitronaphthalene, and 3,5-dinitrobenzoic acid with sodium, potassium, and tetrabutylammonium acetonates in low-polarity solvents exist mostly as contact ion pairs, while in polar solvents, as solvent-separated ion pairs and free ions. Lowering the temperature increases the fraction of solvent-separated ion pairs in low-polarity solvents and of free ions in polar solvents, by shifting the equilibria to stronger solvated ionic species. By quantum-chemical calculations of the geometry and electronic structure of the anions and of the electronic absorption spectra of the free ions and ion pairs, as well as by a spectrophotometric study of adducts with solvents of various polarity it was established that the cation on ion-pair formation coordinates with the 4-nitro group with respect to the pyramidal node.  相似文献   

12.
Direct analysis in real time mass spectrometry (DART-MS) was used to analyze ionic liquids (ILs) containing either imidazolium or phosphonium cations combined with different types of inorganic and organic anions. Ionic liquids were directly inserted into the ionization source using a glass probe without dissolution into organic solvents. Mass spectra of the ILs were collected in both positive and negative mode with a linear ion-trap instrument. The intact cation of the compound was typically the dominant peak in positive mass spectra and cluster ion formation was present. Some individual anions were not readily observed in the negative mass spectra (based on the type of anion); however, the mass difference of adjacent cluster ions equal the mass of a complete IL and the anion mass could be verified by subtracting the known cation mass. The degree and intensity of the cluster ion formations was found to be dependent on the nature of the specific ILs as well as the DART temperature gas stream.
Figure
?  相似文献   

13.
The nature of the interactions between 1,3-dialkylimidazolium cations and noncoordinating anions such as tetrafluoroborate, hexafluorophosphate, and tetraphenylborate has been studied in the solid state by X-ray diffraction analysis and in solution by (1)H NMR spectroscopy, conductivity, and microcalorimetry. In the solid state, these compounds show an extended network of hydrogen-bonded cations and anions in which one cation is surrounded by at least three anions and one anion is surrounded by at least three imidazolium cations. In the pure form, imidazolium salts are better described as polymeric supramolecules of the type {[(DAI)(3)(X)](2+)[(DAI)(X)(3)](2-)}(n) (where DAI is the dialkylimidazolium cation and X is the anion) formed through hydrogen bonds of the imidazolium cation with the anion. In solution, this supramolecular structural organization is maintained to a great extent, at least in solvents of low dielectric constant, indicating that mixtures of imidazolium ionic liquids with other molecules can be considered as nanostructured materials. This model is very useful for the rationalization of the majority of the unusual behavior of the ionic liquids.  相似文献   

14.
Summary. From an overview of the different theoretical and experimental methods it was possible to evidence the presence of aggregates in ionic liquids (ILs), and to specify their role in determining the unique physical-chemical properties of these media. An understanding of the structure of ILs, as pure compounds or in the presence of dissolved species, is fundamental if the reactivity and selectivity in ILs mediated reactions is to become predictive.  相似文献   

15.
Weakly coordinating borate or aluminate anions have recently been shown to yield interesting properties of the resulting ionic liquids (ILs). The same is true for large phenyl‐substituted imidazolium cations, which can be tuned by the choice, position, or number of substituents on the aromatic ring. We were therefore interested to combine these aryl alkyl imidazolium cations with the weakly coordinating tetrakis((1,1,1,3,3,3‐hexafluoropropan‐2‐yl)oxy)borate [B(hfip)4]? anions to study the physical properties and viscosities of these ionic liquids. Despite the large size and high molecular weight of these readily available ILs, they are liquid at room temperature and show remarkably low glass transition points and relatively high decomposition temperatures.  相似文献   

16.
Michler's ketone (MK) and tetracyanoethene (TCNE) may be used as a UV-vis probe to investigate the solvent properties of ionic liquids (ILs). In molecular solvents, MK and TCNE give an electron donor-acceptor (EDA) complex, a zwitterionic species or a radical ion pair, depending on the aprotic or protic nature of the solvent and on its ionizing power. In agreement with the behavior observed in aprotic solvents, only the EDA complex was detected in ILs bearing low donor anions (beta < 0.7). The formation constant determined in [bmim][Tf(2)N] (K(c) = 5.6 (0.5) M(-1)) is similar to that measured in 1,2-dichloroethane at 25 degrees C. The visible absorption maximum (nu(max,CTC)) of the EDA complex is quantitatively described by a multiple correlation using the Kamlet-Taft pi, beta, and alpha parameters of the solvents. The H-bond donating capacity of ILs is not sufficient to determine the transformation of the EDA complex into the zwitterionic species, but the Kamlet-Taft alpha parameter seems to affect the position of the absorption band. The high ionization power of ILs, moreover, favors the slow dissociation of the EDA complex into its corresponding radical ion pair; this behavior generally characterizes highly polar and highly ionizing protic solvents, such as TFE and HFI. Finally, since the formation of the EDA complex is strongly affected by the presence of impurities, traces of nucleophiles (chloride or amines) or water may be easily detected through the change of the solution color.  相似文献   

17.
A hundred years ago, Paul Walden studied ethyl ammonium nitrate (EAN), which became the first widely known ionic liquid. Although EAN has been investigated extensively, some important issues still have not been addressed; they are now tackled in this communication. By combining experimental thermogravimetric analysis with time of flight mass spectrometry (TGA‐ToF‐MS) and transpiration method with theoretical methods, we clarify the volatilisation of EAN from ambient to elevated temperatures. It was observed that up to 419 K, EAN evaporates as contact‐ion pairs leading to very low vapour pressures of a few Pascal. Starting from 419 K, the decomposition to nitric acid and ethylamine becomes more thermodynamically favourable than proton transfer. This finding was supported by DFT calculations, which provide the free energies of all possible gas‐phase species, and show that neutral molecules dominate over ion pairs above 500 K, an observation that is in nearly prefect agreement with the experimental boiling point of 513 K. This result is crucial for the ongoing practical applications of protic ionic liquids such as electrolytes for batteries and fuel cells because, in contrast to high‐boiling conventional solvents, EAN exhibits no significant vapour pressure below 419 K and this property fulfils the requirements for the thermal behaviour of safe electrolytes. Overall, EAN shows the same barely measurable vapour pressures as typical aprotic ionic liquids at temperatures only 70 K lower.  相似文献   

18.
Ionic liquids (ILs) have been suggested as potential "green" solvents to replace volatile organic solvents in reaction and separation processes due to their negligible vapor pressure. To develop ILs for these applications, it is important to gain a fundamental understanding of the factors that control the phase behavior of ionic liquids with other liquids. In this work, we continue our study of the effect of chemical and structural factors on the phase behavior of ionic liquids with alcohols, focusing on pyridinium ILs for comparison to imidazolium ILs from our previous studies. The impact of different alcohol and IL characteristics, including alcohol chain length, cation alkyl chain length, anion, different substituent groups on the pyridinium cation, and type of cation (pyridinium vs imidazolium) will be discussed. In general, the same type of behavior is observed for pyridinium and imidazolium ILs, with all systems studied exhibiting upper critical solution temperature behavior. The impacts of alcohol chain length, cation chain length, and anion, are the same for pyridinium ILs as those observed previously for imidazolium ILs. However, the effect of cation type on the phase behavior is dependent on the strength of the cation-anion interaction. Additionally, all systems from this study and our previous work for imidazolium ILs were modeled using the nonrandom two-liquid (NRTL) equation using two different approaches for determining the adjustable parameters. For all systems, the NRTL equation with binary interaction parameters with a linear temperature dependence provided a good fit of the experimental data.  相似文献   

19.
Among the various properties exhibited by ionic liquids (ILs)--especially those based on the imidazolium cation-their inherent ionic patterns, very low vapour pressure and pronounced self-organization in the solid, liquid and even in the gas phase are particularly interesting since this allows the use of these fluids as alternative and complementary media to classical organic solvents and water in many applications. Hence, reaction paths that involve charge-separated intermediates or transition states are accelerated--by lowering the activation barrier-in the presence of ILs when compared with those performed in classical organic solvents. It is also possible, for example, to observe, by electrochemical methods, transient species (ionic and radical) that are otherwise undetectible in water or in molecular organic solvents and to investigate the interactions and behaviour of molecular, biological and macromolecular species in solution using physical and chemical methods which require special conditions such as high-vacuum, and which have been traditionally limited to solid state chemistry.  相似文献   

20.
We have performed a systematic study addressing the surface behavior of a variety of functionalized and non‐functionalized ionic liquids (ILs). From angle‐resolved X‐ray photoelectron spectroscopy, detailed conclusions on the surface enrichment of the functional groups and the molecular orientation of the cations and anions is derived. The systems include imidazolium‐based ILs methylated at the C2 position, a phenyl‐functionalized IL, an alkoxysilane‐functionalized IL, halo‐functionalized ILs, thioether‐functionalized ILs, and amine‐functionalized ILs. The results are compared with the results for corresponding non‐functionalized ILs where available. Generally, enrichment of the functional group at the surface is only observed for systems that have very weak interaction between the functional group and the ionic head groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号