首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Described herein is a general and mild catalytic asymmetric 1,6‐conjugate addition of para‐quinone methides (p‐QMs), a class of challenging reactions with previous limited success. Benefiting from chiral Brønsted acid catalysis, which allows in situ formation of p‐QMs, our reaction expands the scope to general p‐QMs with various substitution patterns. It also enables efficient intermolecular formation of all‐carbon quaternary stereocenters with high enantioselectivity.  相似文献   

2.
The first Lewis acid catalyzed asymmetric Friedel–Crafts alkylation reaction of ortho‐hydroxybenzyl alcohols with C3‐substituted indoles is described. A chiral N,N′‐dioxide Sc(OTf)3 complex served not only to promote formation of ortho‐quinone methides (o‐QMs) in situ but also induced the asymmetry of the reaction. This methodology enables a novel activation of ortho‐hydroxybenzyl alcohols, thus affording the desired chiral diarylindol‐2‐ylmethanes in up to 99 % yield and 99 % ee. A range of functional groups were also tolerated under the mild reaction conditions. Moreover, this strategy gives concise access to enantioenriched indole‐fused benzoxocines.  相似文献   

3.
ortho‐Quinone methides (o‐QMs) are emerging as highly useful intermediates, the inherent reactivity of which can be used in linchpin reactions for the construction of complex natural products. This review encompasses the major contributions in this field, exemplifying the major strategies and reactivity modes which can be applied.  相似文献   

4.
The enantioselective conjugated addition of tritylthiol to in situ generated ortho‐quinone methides (o‐QMs) is catalyzed by an acid–base bifunctional squaramide organocatalyst. The transformation proceeds with high yield (up to 99 %) and stereoselectivity (up to 97:3 e.r.) using water as solvent under mild conditions. The catalyst system provides a new strategy for the synthesis of optically active benzyl mercaptans. Control experiments suggested that o‐QMs are generated by the tertiary amine moiety of the squaramide organocatalyst and that the water–oil biphase is crucial for achieving high reactivity and stereoselectivity.  相似文献   

5.
The first catalytic asymmetric (4+3) cyclization of in situ generated ortho‐quinone methides with 2‐indolylmethanols has been established, which constructed seven‐membered heterocycles in high yields (up to 95 %) and excellent enantioselectivity (up to 98 %). This approach not only represents the first catalytic asymmetric (4+3) cyclization of o‐hydroxybenzyl alcohols, but also enabled an unprecedented catalytic asymmetric (4+3) cyclization of 2‐indolylmethanols. In addition, a scarcely reported catalytic asymmetric (4+3) cyclization of para‐quinone methide derivatives was accomplished.  相似文献   

6.
A convergent and highly stereoselective [4+2] cycloaddition of in situ‐generated ortho‐Quinone methides (o‐QMs) and azlactone enols has been successfully developed through a triple Brønsted acid catalysis strategy. This protocol provides an efficient and mild access to various densely functionalized dihydrocoumarins bearing adjacent quaternary and tertiary stereogenic centers in high yields with excellent diastereo‐ and enantioselectivity.  相似文献   

7.
A direct decarboxylative strategy for the generation of aza‐o‐quinone methides (aza‐o‐QMs) by N‐heterocyclic carbene (NHC) catalysis has been discovered and explored. This process requires no stoichiometric additives in contrast with current approaches. Aza‐o‐QMs react with trifluoromethyl ketones through a formal [4+2] manifold to access highly enantioenriched dihydrobenzoxazin‐4‐one products, which can be converted to dihydroquinolones through an interesting stereoretentive aza‐Petasis–Ferrier rearrangement sequence. Complementary dispersion‐corrected density functional theory (DFT) studies provided an accurate prediction of the reaction enantioselectivity and lend further insight to the origins of stereocontrol. Additionally, a computed potential energy surface around the major transition structure suggests a concerted asynchronous mechanism for the formal annulation.  相似文献   

8.
A new strategy for enantioselective synthesis of axially chiral naphthyl‐indoles has been established through catalytic asymmetric addition reactions of racemic naphthyl‐indoles with bulky electrophiles. Under chiral phosphoric acid catalysis, azodicarboxylates and o‐hydroxybenzyl alcohols served as bulky but reactive electrophiles that were attacked by C2‐unsubstituted naphthyl‐indoles, which underwent a dynamic kinetic resolution to afford two series of axially chiral naphthyl‐indoles in good yields (up to 98 %) and high enantioselectivities (up to 98:2 er).  相似文献   

9.
In this review, the recent developments in catalytic asymmetric inverse‐electron‐demand hetero‐Diels−Alder reaction, which is recognized as one of the most powerful routes to construct highly functionalized and enantioenriched six‐membered heterocycles, are described. The article is organized on the basis of different kinds of electron‐deficient heterodienes, including α,β‐unsaturated ketones/aldehydes, o‐benzoquinones, α,β‐unsaturated imines, N‐aryl imines, o‐benzoqinone imides, and other aza‐olefins.  相似文献   

10.
Catalytic asymmetric Michael and Mannich‐type reactions of glycine Schiff bases with chiral two‐center organocatalysts, tartrate‐derived diammonium salts (TaDiASs), are described. On the basis of conformational studies, optimized TaDiASs with a 2,6‐disubstituted cyclohexane spiroacetal were newly designed. These TaDiASs catalyzed the asymmetric Michael and Mannich‐type reactions of glycine Schiff bases with higher enantioselectivity than previous catalysts. In the Mannich‐type reaction, aromatic N‐Boc‐protected imines (Boc=tert‐butoxycarbonyl) as well as enolizable alkyl imines were applicable. As a synthetic application of the catalytic asymmetric Mannich‐type reaction with the optimized TaDiASs, we developed a catalytic asymmetric total synthesis of (+)‐nemonapride, which is an antipsychotic agent.  相似文献   

11.
A DMAP‐N‐oxide, featuring an α‐amino acid as the chiral source, was developed, synthesized and applied in asymmetric Steglich rearrangement. A series of O‐acylated azlactones afforded C‐acylated azlactones possessing a quaternary stereocenter in high yields (up to 97 % yield) and excellent enantioselectivities (up to 97 % ee). Compared to the widespread use of pyridine nitrogen, which serves as the nucleophilic site in the asymmetric acyl transfer reaction, we discovered that chiral DMAP‐N‐oxides, in which the oxygen now acts as the nucleophilic site, are efficient acyl transfer catalysts. Our finding might open a new door for the development of chiral DMAP‐N‐oxides for asymmetric acyl transfer reactions.  相似文献   

12.
The asymmetric catalytic addition of alcohols (phenols) to non‐activated alkenes has been realized through the cycloisomerization of 2‐allylphenols to 2‐methyl‐2,3‐dihydrobenzofurans (2‐methylcoumarans). The reaction was catalyzed by a chiral titanium–carboxylate complex at uncommonly high temperatures for asymmetric catalytic reactions. The catalyst was generated by mixing titanium isopropoxide, the chiral ligand (aS)‐1‐(2‐methoxy‐1‐naphthyl)‐2‐naphthoic acid or its derivatives, and a co‐catalytic amount of water in a ratio of 1:1:1 (5 mol % each). This homogeneous thermal catalysis (HOT‐CAT) gave various (S)‐2‐methylcoumarans with yields of up to 90 % and in up to 85 % ee at 240 °C, and in 87 % ee at 220 °C.  相似文献   

13.
A DMAP‐N‐oxide, featuring an α‐amino acid as the chiral source, was developed, synthesized and applied in asymmetric Steglich rearrangement. A series of O‐acylated azlactones afforded C‐acylated azlactones possessing a quaternary stereocenter in high yields (up to 97 % yield) and excellent enantioselectivities (up to 97 % ee). Compared to the widespread use of pyridine nitrogen, which serves as the nucleophilic site in the asymmetric acyl transfer reaction, we discovered that chiral DMAP‐N‐oxides, in which the oxygen now acts as the nucleophilic site, are efficient acyl transfer catalysts. Our finding might open a new door for the development of chiral DMAP‐N‐oxides for asymmetric acyl transfer reactions.  相似文献   

14.
The reaction of vinyl Grignard reagents with o‐methoxynitroarenes containing an electron‐releasing substituent para to the nitro group proceeds through a pathway that is different from the initially expected Bartoli indole synthesis. Thus, instead of giving fused indole derivatives, these reactions provide a very mild and efficient new procedure for the synthesis of synthetically relevant aromatic systems containing an o‐nitrovinyl moiety, such as 5‐nitro‐4‐vinylindoles, 6‐nitro‐7‐vinylindoles, 6‐nitro‐5‐vinyl‐2(1H)quinolinones, and 4‐nitro‐3‐vinylanilines.  相似文献   

15.
Juyan Liu  Qian Liu  Wei Xu  Weilu Wang 《中国化学》2011,29(8):1739-1744
A new and efficient method for the synthesis of benzoxazoles, benzothiazoles, benzimidazoles from reactions of o‐substituted aminoaromatics with orthoesters in the presence of catalytic amounts of Ga(OTf)3 under solvent‐free conditions is presented. The remarkable features of this new protocol are high conversion, very short reaction times, cleaner reaction profiles under solvent‐free conditions, straight forward procedure, and use of relatively non‐toxic catalysts.  相似文献   

16.
The photoenolization/Diels–Alder strategy offers straightforward access to synthetically valuable benzannulated carbocyclic products. This historical light‐triggered process has never before succumbed to efforts to develop an enantioselective catalytic approach. Herein, we demonstrate how asymmetric organocatalysis provides simple yet effective catalytic tools to intercept photochemically generated hydroxy‐o‐quinodimethanes with high stereoselectivity. We used a chiral organic catalyst, derived from natural cinchona alkaloids, to activate maleimides toward highly stereoselective Diels–Alder reactions. An unconventional mechanism of stereocontrol is operative, wherein the organocatalyst is actively involved in both the photochemical pathway, by leveraging the formation of the reactive photoenol, and the stereoselectivity‐defining event.  相似文献   

17.
A series of new benzimidazolium chlorides bearing N,N′‐benzyl, 2,4,6‐trimethylbenzyl and 2,4,6‐triisopropylbenzyl substituents have been designed and synthesized from various o‐phenylenediamines. Subsequently, corresponding Cu‐based N‐heterocyclic carbenes (NHCs) were generated in situ in the reaction medium which represents a new application of NHCs exploiting distinct catalytic property towards intermolecular cyclization reaction cascade for the synthesis of 2‐aryl‐3‐(arylethynyl)quinoxalines from o‐phenylenediamines and terminal alkynes. The outcome of the cyclization reaction product depends upon the N,N′‐substituents present on the benzimidazolium chlorides.  相似文献   

18.
All four isomers of a novel β‐branched unusual amino acid were designed and synthesized with high stereoselectivity (>90% de) and in 33% –44% overall yields by the use of 4(R/S)‐5,5‐dimethyl‐4‐phenyl‐oxazolidin‐2‐one as the chiral auxiliary via asymmetric 1,4‐Michael addition, direct or indirect azidation, hydrolysis and hydrogenation reactions.  相似文献   

19.
The development of the first trans‐selective catalytic asymmetric [2+2] cyclocondensation of acyl halides with aliphatic aldehydes furnishing 3,4‐disubstituted β‐lactones is described. This work made use of a new strategy within the context of asymmetric dual activation catalysis: it combines the concepts of Lewis acid and organic aprotic ion pair catalysis in a single catalyst system. The methodology could also be applied to aromatic aldehydes and offers broad applicability (29 examples). The utility was further demonstrated by nucleophilic ring‐opening reactions that provide highly enantiomerically enriched anti‐aldol products.  相似文献   

20.
3,3′,4,4′‐Diphenylsulfonetetracarboxylic dianhydride (1) was reacted with L ‐isoleucine (2) in acetic acid and the resulting imide‐acid (3) was obtained in high yield. The diacid chloride (4) was prepared from the diacid derivative (3) by reaction with thionyl chloride. The polycondensation reaction of diacid chloride (4) with several aromatic diamines such as 4,4′‐sulfonyldianiline (5a), 4,4′‐diaminodiphenyl methane (5b), 4,4′‐diaminodiphenylether (5c), p‐phenylenediamine (5d),m‐phenylenediamine (5e), 2,4‐diaminotoluene (5f) and 4,4′‐diaminobiphenyl (5g) was performed by two conventional methods: low temperature solution polycondensation and short period reflux conditions. In order to compare conventional solution polycondensation reaction methods with microwave‐assisted polycondensation, the reactions were also carried out under microwave conditions with a small amount of o‐cresol that acts as a primary microwave absorber. The reaction mixture was irradiated for 6 min with 100% of radiation power. Several new optically active poly(amide‐imide)s with inherent viscosity ranging from 0.23 to 0.41 dl/g were obtained with high yield. All of the earlier polymers were fully characterized by IR, elemental analyses and specific rotation techniques. Some structural characterizations and physical properties of these new optically active poly(amide‐imide)s are reported. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号