首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel kinetic chemiluminescent method using the stopped-flow mixing technique has been investigated for the rapid and sensitive determination of citrate and pyruvate. The method is based on a tris(2,2′-bipyridiyl)ruthenium(III) (Ru(bpy)33+) chemiluminescence (CL) reaction. Ru(bpy)33+ was generated in the mixing chamber by oxidising tris(2,2′-bipyridyl)ruthenium(II) with cerium(IV). After selecting the best operating parameters, calibration graphs were obtained over the concentration ranges 0.38-38 μg ml−1 and 8.7-1300 ng ml−1 for citrate and pyruvate, respectively. The limits of detection were 0.1 μg ml−1 for citrate and 0.3 ng ml−1 for pyruvate. Based on the differential rate of the chemiluminescent reaction corresponding to citrate and pyruvate, a very simple kinetic procedure was developed for the simultaneous determination of both compounds. Mixtures of citrate and pyruvate in ratios between 15:1 and 1.5:1 were satisfactorily resolved. The proposed method was successfully applied to the determination of citrate in pharmaceutical formulations, pyruvate in animal blood serum and both compounds in human urine.  相似文献   

2.
A simple chemiluminometric method using flow injection has been developed for the determination of paracetamol (acetaminophen), based on the chemiluminescence produced by the reduction of tris(2,2′-bipyridyl)ruthenium(III). The latter is obtained by oxidation of tris(2,2′-bipyridyl)ruthenium(II) by potassium permanganate in dilute sulphuric acid in the presence of paracetamol. A standard or sample solution was injected into the ruthenium(II) stream (flow rate 1.5 ml min−1) which was then merged with potassium permanganate in dilute sulphuric acid stream (flow rate 0.5 ml min−1). The chemiluminescence intensity is enhanced by the presence of manganese(II) ions. Under the optimum conditions, a linear calibration graph was obtained over the range of 0.3-50.0 μg ml−1 and the detection limit was 0.2 μg ml−1 (s/n = 3). The relative standard deviation of the proposed method calculated from 20 replicate injections of 5.0 μg ml−1 paracetamol was 1.1%. The sample throughput was 90 h−1. The method was successfully applied to the determination of paracetamol in commercial pharmaceutical formulations.  相似文献   

3.
An integrated retention/photometric detection method for the determination of microamounts of iron was developed. The method is based on the retention of the reaction product of the analyte with ferrozine in a flow cell packed with an anion exchange support, and on the subsequent elution of the retained complex with a solution of 1.5% sodium peroxide, which allows the reuse of the system. The method is highly selective and has a detection limit (3σ) of 4.3 ng ml−1. Iron was thus determined in the range 10–200 ng ml−1with a relative standard deviation of 1–3% (n= 11). The method was applied to the determination of iron in tap and river water and the results were consistent (2%) with those provided by AAS.  相似文献   

4.
Xi J  Ai X  He Z 《Talanta》2003,59(5):1045-1051
A chemiluminescence (CL) method for the determination of barbituric acid (BA) was proposed, which is based on the enhancement of BA to the CL intensity of Tris-(1,10-phenanthroline)ruthenium(II) (Ru(phen)32+)-cerium(IV) (Ce(IV)) system. The concentration of BA is proportional to the CL intensity in the range of 5.0×10−3-2.0 μg ml−1. The detection limit is 6.9×10−4 μg ml−1. The relative standard deviation (R.S.D.) of determining 11 samples containing 0.20 μg ml−1 BA is 3.2%. This CL method has been successfully applied to the determination of BA in the synthetic samples. The mechanism of CL reaction was studied.  相似文献   

5.
A simple and sensitive flow injection analysis-atomic absorption spectrometric procedure is described for the determination of cobalt. The method is based upon on-line preconcentration of cobalt on a microcolumn of 2-nitroso-1-naphthol immobilized on surfactant coated alumina. The trapped cobalt is then eluted with ethanol (250 μl) and determined by flame atomic absorption spectrometry. The analytical figures of merit for the determination of cobalt are as follows: detection limit (3 S), 0.02 ng ml−1; precision (RSD), 2.8% for 20 ng ml−1 and 1.7% for 70 ng ml−1 of cobalt; enrichment factor, 125 (using 25 ml of sample). The method has been applied to the determination of cobalt in water samples, vitamin B12 and B-complex ampoules and accuracy was assessed through recovery experiment and independent analysis by furnace AAS.  相似文献   

6.
The electron transfer (ET) reaction of aryl methyl sulfoxides with ruthenium(III)-polypyridine complexes is sensitive to the change of substituent in the aryl moiety of ArS(O)CH3 and ligand of Ru(III) complex. The detection of sulfoxide radical cation as the transient by conventional flash photolysis confirms ET in the rate-controlling step. The successful application of Marcus cross relation of ET leads to the evaluation of self-exchange rate constant of ArS+(O)CH3/ArS(O)CH3 as 4.0×105 M−1 s−1 similar to organic sulfides. Comparison with the reactivity of iron(III)-polypyridyl complexes points out that both reactivity and ρ values are higher with Ru(III) complexes.  相似文献   

7.
Kilian K  Pyrzyńska K 《Talanta》2003,60(4):669-678
The reaction of 5,10,15,20-tetrakis(4-carboxylphenyl)porphyrin (TCPP) with Cd(II), Pb(II), Hg(II) and Zn(II) was studied spectrophotometrically and kinetics, equilibrium constants as well as photodecomposition of complexes were determined. It was verified that these metal ions with large radius accelerate the incorporation reaction of zinc into TCPP. On the basis of the mechanism and kinetics of this reaction, a sensitive method for the spectrophotometric determination of trace amounts of Zn(II) has been developed. The molar absorptivity of examined Zn-TCPP complex and Sandell's sensitivity at 423 nm were 3.5×105 M−1 cm−1 and 18.3 ng cm−2. The detection limit for the recommended procedure was 1.4×10−9 M (0.9 ng ml−1) and precision in range 20-100 ng ml−1 not exceeds 2.7% RSD. The proposed method applied for zinc determination in natural waters and nutritional supplement was compared with AAS results and declared value.  相似文献   

8.
A highly sensitive and selective second derivative spectrophotometric method has been developed for the determination of ruthenium and iron in mixtures. The method is based on the formation of the binary complexes of iron and ruthenium with 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline) in the presence of ethyleneglycol. These complexes are formed at pH 4.0-6.0 upon heating at 90 degrees C for 60 min. The ternary perchlorate complexes are then separated by liquid-liquid extraction. The extracts were evaluated directly by derivative spectrophotometric measurement, using the zero-crossing approach for determination of both analytes. Ruthenium and iron were thus determined in the ranges 9.6-450 and 16.3-280 ng/ml, respectively, in the presence of one another. The detection limits achieved (3sigma) were found to be 2.9 ng/ml of ruthenium and 4.9 ng/ml of iron. The relative standard deviations were in all instances less than 1.5%. The proposed method was applied to the determination of both analytes in synthetic mixtures.  相似文献   

9.
Al-Arfaj NA 《Talanta》2004,62(2):255-263
A flow-injection (FI) methodology using (2,2′-dipyridyl) ruthenium(II) [Ru(dipy)32+] chemiluminescence (CL) was developed for the rapid and sensitive determination of metoclopramide hydrochloride. The method is based on the CL reaction of metoclopramide with Ru(dipy)32+ and KMnO4 in a sulfuric acid medium. Under the optimum conditions, a calibration graph was obtained over the concentration range 0.005-3.5 μg ml−1 with a limit of detection (S/N=2) of 1 ng ml−1. The correlation coefficient was 0.99993 (n=8) with a relative standard deviation of 0.48% for 10 determinations of 1 μg ml−1 of drug. The method was successfully applied to the determination of metoclopramide in pharmaceutical preparations and biological fluids after IP administration of 25 mg kg−1 dose to rats. The elimination half-life was 2.5±0.4 h.  相似文献   

10.
The formation and extraction into chloroform of iron complex with PASH (λmax = 640 nm) was studied. Beer's law is obeyed between 2.7 and 16.0 μg · ml−1 of iron, in organic phase (10 ml). The method can be applied to volume ratios Vaq.:Vorg. from 1:1 to 20:1. The minimum concentration determinable in aqueous phase is 135 ng ml−1 of iron. The interferences of 73 species were evaluated and eliminated when it was possible. The extraction method of the green complex was applied for the spectrophotometric determination of iron(II) in several standard, geochemical, and bromatological samples. A procedure based on the standard addition method was applied satisfactorily to the determination of as little as 25 ng of iron(II) per milliliter.  相似文献   

11.
Ensafi AA  Khayamian T  Atabati M 《Talanta》2003,59(4):727-733
A sensitive cathodic stripping voltammetric method is developed for determination of lead(II), with adsorptive collection of complexes with Pyrogallol red (PGR) on to a hanging mercury drop electrode. After accumulation of the complex at −0.80 V vs. Ag/AgCl reference electrode, the potential is scanned in a negative direction from −0.20 to −0.50 V with differential pulse method. Then the reduction peak current for the lead(II)-PGR complex is measured at −0.39 V. The influence of reagent and instrumental variables was completely studied by factorial design analysis. The optimum analytical conditions for the determination of lead(II) were established. Under optimum conditions, lead(II) determined in the range of 0.1-30.0 ng ml−1 with a limit of detection of 0.06 ng ml−1. The method is successfully applied to determination of lead(II) in water sample.  相似文献   

12.
Pourreza N  Mousavi HZ 《Talanta》2004,64(1):264-267
A sensitive and selective preconcentration method for the determination of trace amounts of iron by atomic absorption spectrometry has been developed. Iron forms a complex with methylthymol blue at pH=3. This complex is retained by naphthalene tetraoctylammonium bromide adsorbent in a column with a height of about 2 cm. The adsorbed metal complex is then eluted from the column with nitric acid and its iron content is determined by flame atomic absorption spectrometry (FAAS). The effect of different variables such as pH, reagent concentration, flow rate and interfering ions on the recovery of the analyte was investigated. The calibration graph was linear in the range 25-350 ng ml−1 of iron in the initial solution with r=0.9994. The limit of detection based on 3Sb criterion was 12 ng ml−1 and the relative standard deviation for eight replicate measurements of 150 and 300 ng ml−1 of iron was 3.1 and 1.8%, respectively. This procedure was successfully applied to the determination of iron in tap and sewage water samples.  相似文献   

13.
A very simple and selective spectrophotometric method for simultaneous determination of iron(II), nickel(II) and cobalt(II) based on formation of their complexes with 1-(2-pyridylazo)-2-naphtol (PAN) in micellar media is described. Although the complexes of Fe(II), Ni(II) and Co(II) with reagent show a spectral overlap, they have been simultaneously determined by partial least squares (PLS) with and without preprocessing step using direct orthogonal signal correction (DOSC). The linear range was 0.30-4.50 μg ml−1 for Co(II), 0.20-3.00 μg ml−1 for Ni(II) and 0.30-5.00 μg ml−1 for Fe(II). The results obtained by the PLS and DOSC-PLS were statistically compared. Interference effects of common anions and cations were studied and the proposed method was also applied satisfactorily to the determination of Fe(II), Ni(II) and Co(II) in synthetic samples.  相似文献   

14.
A sensitive method for the determination of ruthenium involving the formation of volatile species in solution and subsequent nebulization for inductively coupled plasma/atomic emission spectrometry is proposed. The sensitivity of the determination of ruthenium was increased by a factor of 70 with the addition of 1×10?2 M periodic acid as an oxidizing agent. The detection limit was 5 ng ml?1 of ruthenium and the calibration was linear over the range 0.01–0.5 μg ml?1 of ruthenium. Serious interferences were not found except from reducing agents.  相似文献   

15.
《Analytica chimica acta》2002,459(2):235-243
For the first time, a solid sensing zone implemented with unsegmented flow analysis is described for the simultaneous determination of two pesticides, thiabendazole and warfarin. The system works as a simple and rapid spectrofluorimetric biparameter sensor. The sensor is based on the retention of the analytes on the sensing solid zone (octadecyl silane C18 gel) placed in the detection zone itself into a quartz flow-cell. A temporary sequentiation in the arrival of the analytes to the sensing zone is achieved by on line separation using a pre-column of the same gel placed just before the flow cell. Thiabendazole is determined the first (using methanol 30% (v/v) as carrier/elution solution) because it passes through the pre-column while warfarin is strongly retained in it. Then, warfarin is conveniently eluted from the pre-column (using methanol 50% (v/v) as carrier/elution solution) the intrinsic fluorescence peak height measured at an excitation wavelength of 309 nm and an emission wavelength of 368 nm is used as analytical signal. Using a low sample volume (40 μl), the analytical signal showed a very good linearity in the range 10-800 ng ml−1 and 2-40 μg ml−1 with detection limits of 2.35 ng ml−1 and 0.54 μg ml−1 for thiabendazole and warfarin, respectively. The sensor was satisfactorily applied to the determination of these two analytes in pesticides and pharmaceutical preparations.  相似文献   

16.
A simple and rapid analytical method was developed for the determination of phthalates, usually employed in nail cosmetic products. The method is based on an ultrasonic extraction of the sample with ethanol-water (90:10, v/v) followed by HPLC separation and quantitation. HPLC was carried out using a C18 column and spectrophotometric detection at 254 nm. A linear gradient elution was performed with ethanol-water starting from 50 to 95% ethanol in 30 min. Standard calibration curves were linear for all the analytes over the concentration range 5-200 μg ml−1 with LOD values of about 0.5 μg ml−1.The proposed green analytical method has been successfully applied for the analysis of commercial samples in order to check the presence of phthalates and to determine their concentration.  相似文献   

17.
Sun Y  Tang Y  Yao H  Zheng X 《Talanta》2004,64(1):156-159
A sensitive flow injection chemiluminescence (FL-CL) method for the determination of cephalosporin antibiotics, was developed. The method was based on that cephalosporin antibiotics could enhance the CL reaction of glyoxal and KMnO4 in sulfuric acid. Method development included the optimization of reagent concentrations and flow-rate. Under the optimized conditions, three cephalosporin antibiotics: cefalexin, cefadroxil, and cefazolin sodium, were determined. The detection limits of the method are 10 ng ml−1 cefalexin, 2 ng ml−1 cefadroxil, and 2 ng ml−1 cefazolin sodium. The method was successfully applied to the determination of three cephalosporin antibiotics in pharmaceutical preparations.  相似文献   

18.
Di J  Yang T 《Talanta》2003,61(2):165-171
A new high sensitive spectrophotometric determination of trace molybdenum was investigated. The sensitivity of the determination of molybdenum, which based on the color charge transfer complex of molybdotungstophosphate-3,3′,5,5′-tetramethylbenzidine, was greatly enhanced by copper(II) ions in the presence of polyvinyl alcohol. The improved method maintained the features of simplicity, rapidity and selectivity, especially eliminating the interference from tungsten. Under the optimum conditions, Beer's law was obeyed over the range from 2 to 32 ng ml−1 molybdenum with molar absorptivity being 4.92×105 l mol−1 cm−1 at 660 nm. The relative standard deviation was 1.2% under nine determinations for 16 ng ml−1 Mo(VI). The present method had been applied to the determination of trace molybdenum in tungsten ores with satisfactory results.  相似文献   

19.
Nakano S  Tanaka E  Mizutani Y 《Talanta》2003,61(2):203-210
A highly sensitive flow-injection method is proposed for the catalytic determination of vanadium(V) at sub-nanogram per milliliter levels using a new indicator reaction. The method is based on the catalytic effect of vanadium(V) on the bromate oxidation of N,N′-bis(2-hydroxyl-3-sulfopropyl)-tolidine. 1,2-Dihydroxybenzene-3,5-disulfonate was used as an activator in the vanadium(V)-catalyzed reaction and significantly enhanced the sensitivity of the method. Vanadium(V) in the range 0.01-3.0 ng ml−1 was easily determined with sampling rate of about 30 h−1. Vanadium(IV) could be also determined. The limit of detection (S/N=3) was 0.008 ng ml−1 and the relative standard deviations were 1.4 and 1.6% for ten determinations of 0.2 ng ml−1 vanadium(IV) and vanadium(V), respectively. Interferences from metal ions could be suppressed by the addition of ethylenediamine-N,N,N′,N′-tetrakis(methylenephosphonic acid) as a masking agent. The proposed method was successfully applied to the determination of vanadium in water samples.  相似文献   

20.
Hefnawy MM  Aboul-Enein HY 《Talanta》2003,61(5):667-673
A new analytical method for the separation and determination of R-(−)- and S-(+)- baclofen enantiomers in human plasma by high-performance liquid chromatography (HPLC) with UV detection was developed. Enantioselective resolution of the baclofen enantiomers was achieved by using teicoplanin macrocyclic antibiotic chiral stationary phase (CSP) known as Chirobiotic T with a polar ionic mobile phase (PIM) consisting of methanol: glacial acetic acid: triethylamine, 100:0.1:0.1, (v/v/v) at a flow rate of 0.5 ml min−1 and UV detection set at 220 nm. The analytes of interest with S-(+)-sulpiride as the internal standard were extracted from human plasma using liquid-liquid extraction procedure with ethyl ether under alkaline condition prior to HPLC analysis. Recoveries for R-(−)- and S-(+)-baclofen enantiomers were in the ranges of 96-103% at 60-2500 ng ml−1 level. Intra-day and inter-day precision calculated as %RSD was in the ranges of 1.2-5.2 and 1.3-4.3% for both enantiomers, respectively. Intra-day and inter-day accuracy calculated as percentage error were in the ranges of 1.2-3.9 and 1.1-3.9% for both enantiomers, respectively. Linear calibration curves in the concentration ranges of 20-3000 ng ml−1 for each enantiomer showed correlation coefficient (r) of 0.9997. The limit of quantitation (LOQ) and limit of detection (LOD) for each enantiomer in human plasma were 20 and 10 ng ml−1 (S/N=3) respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号