首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对一类状态不可测的模糊输入时滞系统,应用平行分布补偿算法(PDC),设计了模糊观测器,提出了基于模糊观测器的输出反馈控制方法,给出了保证模糊时滞系统渐近稳定的新的充分条件.应用广义Lyapunov函数和线性矩阵不等式方法,证明了模糊输入时滞系统的渐近稳定性,同时给出了控制和观测增益矩阵的分离设计算法.仿真结果进一步验证了所提出的方法和条件的有效性.  相似文献   

2.
In this paper, the boundary output feedback stabilization problem is addressed for a class of coupled nonlinear parabolic systems. An output feedback controller is presented by introducing a Luenberger‐type observer based on the measured outputs. To determine observer gains, a backstepping transform is introduced by choosing a suitable target system with nonlinearity. Furthermore, based on the state observer, a backstepping boundary control scheme is presented. With rigorous analysis, it is proved that the states of nonlinear closed‐loop system including state estimation and estimation error of plant system are locally exponentially stable in the L2norm. Finally, a numerical example is proposed to illustrate the effectiveness of the presented scheme.  相似文献   

3.
This paper investigates the design of an output feedback adaptive stabilization controller for a nonholonomic chained system with strong nonlinear drifts, including modeled nonlinear dynamics, unmodeled dynamics, and dynamics modeled with unknown parameters. Also the virtual control directions of the system are unknown. The purpose is to design a nonlinear output feedback switching controller such that the closed loop system is globally asymptotically stable. A novel observer and estimator are introduced for states and parameter estimates, respectively. A constructive procedure of design for an output feedback adaptive controller is given, by using the integrator backstepping approach and based on the proposed observer and parameter estimator. An example is given to show the effectiveness of the proposed scheme.  相似文献   

4.
This paper presents a nonlinear output feedback which asymptotically linearizes the class of nonlinear, continuous-time, affine in the control systems having relative degree equal to the state space dimension. Moreover, we show that any set of eigenvalues can be assigned for the asymptotic closed-loop linear system. The controller is based on a nonlinear observer, presented in a previous paper, and on the linearizing state feedback proposed by Isidori and computed in the estimated state. The main result obtained is equivalent to the separation theorem in the linear case.This work was supported by the Italian Ministry for University and Scientific and Technological Research.  相似文献   

5.
This paper is concerned with the problem of hybrid output regulation for a class of linear impulsive systems with aperiodic jumps. Firstly, by leveraging time-dependent Lyapunov function technique and impulsive control theory, sufficient conditions for achieving output regulation are obtained in state feedback case. Then, the results are extended to error feedback case by constructing an impulsive observer. In this framework, two novel hybrid controllers are designed. Such controllers only need the discrete-time system state or error signal for feedback. The complete procedures for controller designs are also presented. Finally, two illustrative examples, including a numerical example and an LC circuit, are given to show the validity and applicability of the proposed control laws.  相似文献   

6.
The state estimation problem is considered for a diffusion-reaction system with spatially varying parameters defined on a 3-dimensional rectangular domain with the measured output being restricted to a single surface. For this, a backstepping-based observer design is applied, which enables to obtain the observer gains such that the observer error dynamics decays exponentially in the L2-norm. At first, an idealized system output restricted to a single surface is assumed as an available measurement. Secondly, in view of a practical realization of the proposed observer, the idealized system output is reconstructed from a set of finite-dimensional measurements. The observer error convergence and the applicability of the proposed approach are evaluated by means of numerical simulations. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
This paper investigates the problem of dynamic output feedback fault tolerant controller design for discrete-time switched systems with actuator fault. By using reduced-order observer method and switched Lyapunov function technique, a fault estimation algorithm is achieved for the discrete-time switched system with actuator fault. Then based on the obtained online fault estimation information, a switched dynamic output feedback fault tolerant controller is employed to compensate for the effect of faults by stabilizing the closed-loop systems. Finally, an example is proposed to illustrate the obtained results.  相似文献   

8.
In this paper, a nonlinear adaptive output feedback robust controller is proposed for motion control of hydraulic servo systems in the presence of largely unknown matched and mismatched modeling uncertainties. Different from the existing control technologies, the presented hydraulic closed-loop controller which can deal with strong matched and mismatched parametric uncertainties is synthesized via the backstepping technique. Specially, a nonlinear disturbance observer which can estimate the largely mismatched disturbance is integrated into the design of the linear extended state observer to obtain estimation of unmeasurable system states, uncertain parameters and strong disturbances simultaneously. In addition, the projection-type adaptive law is synthesized into the design of the resulting controller. More importantly, the global stability of the whole closed-loop system is strictly guaranteed by the Lyapunov analysis. Furthermore, the effectiveness and practicability of the presented control strategy have been demonstrated by comparative experiments under different working conditions.  相似文献   

9.
A global adaptive output feedback control strategy is presented for a class of nonholonomic systems in generalized chained form with drift nonlinearity and unknown virtual control parameters. The purpose is to design a nonlinear output feedback switching controller such that the closed-loop system is globally asymptotically stable. By using the input-state scaling technique and an integrator back-stepping approach, an output feedback controller is given. A filter of observer gain is introduced for state and parameter estimates. Meanwhile, in order to avoid the over-parameters, a tuning function technique is utilized. A novel switching control strategy based on the output measurement of the first subsystem rather than time is used to overcome the uncontrollability of the x0-subsystem in the origin. The proposed controller can guarantee that all the system states globally converge to the origin, while other signals maintain bounded. The numerical simulation testifies the effectiveness.  相似文献   

10.
We consider the problem of uniform (input-irrespective) observation of a scalar bilinear system. For state estimation, we use a linear observer with observation error feedback whose feedback coefficients form a hierarchy in powers of the feedback parameter. For a sufficiently large value of the parameter, the observer provides an asymptotic estimate of the unknown system state vector.  相似文献   

11.
A new output feedback adaptive control scheme for multi-input and multi-output (MIMO) nonlinear systems is presented based on the high frequency gain matrix factorization and the backstepping approach with vector form. The only required prior knowledge about the high frequency gain matrix of the linear part of the system is the signs of its leading principal minors. The proposed controller is a dynamic one that only needs the measurement of the system output, and the observer and the filters are introduced in order to construct a virtual estimate of the unmeasured system states. The global stability of the closed-loop systems is guaranteed through this control scheme, and the tracking error converges to zero. Finally, the numerical simulation results illustrate the effectiveness of the proposed scheme.  相似文献   

12.
This paper investigates the problem of observer design for nonlinear systems. By using differential mean value theorem, which allows transforming a nonlinear error dynamics into a linear parameter varying system, and based on Lyapunov stability theory, an approach of observer design for a class of nonlinear systems with time‐delay is proposed. The sufficient conditions, which guarantee the estimation error to asymptotically converge to zero, are given. Furthermore, an adaptive observer design for a class of nonlinear system with unknown parameter is considered. A method of H adaptive observer design is presented for this class of nonlinear systems; the sufficient conditions that guarantee the convergence of estimation error and the computing method for observer gain matrix are given. Finally, an example is given to show the effectiveness of our proposed approaches. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This paper derives a linear model of open channels enabling to design a decentralized volume variations observer. The proposed observer allows to implement decentralized constant volume controllers under the realistic assumption of non-measurable state. The main advantage of this approach is that each state variable may be reconstructed on the base of only local measurements, thus not vanishing the advantage of decentralization in the controller.Since the fundamental property which must be retained for all possible perturbations of the plant is stability of the feedback system, this paper studies whether a given decentralized controller used in conjunction with the proposed observer is robust when output-multiplicative perturbations occur due to the low-frequency approximations and to the variations with respect to the reference configuration of uniform flow.  相似文献   

14.
针对一类非严格反馈的时滞非线性系统, 研究了一类基于观测器的自适应神经网络控制问题.针对系统中存在未知状态变量的问题, 设计了一个状态观测器.利用反步法和径向基神经网络的逼近特性, 提出了一种自适应神经网络输出反馈控制方法.所设计的控制器保证了闭环系统中所有信号的半全局一致有界性.最后, 通过仿真验证了所提控制方法的有效性.  相似文献   

15.
Finite‐region stability (FRS), a generalization of finite‐time stability, has been used to analyze the transient behavior of discrete two‐dimensional (2‐D) systems. In this paper, we consider the problem of FRS for discrete 2‐D Roesser models via dynamic output feedback. First, a sufficient condition is given to design the dynamic output feedback controller with a state feedback‐observer structure, which ensures the closed‐loop system FRS. Then, this condition is reducible to a condition that is solvable by linear matrix inequalities. Finally, viable experimental results are demonstrated by an illustrative example.  相似文献   

16.
This article studies the problem of observer‐based dissipative control problem for wireless networked control systems (NCSs). The packet loss and time delay in the network are modeled by a set of switches, using that a discrete‐time switched system is formulated. First, results for the exponential dissipativity of discrete‐time switched system with time‐varying delays are proposed by using the average dwell time approach and multiple Lyapunov–Krasovskii function. Then, the results are extended to drive the controller design for considered wireless NCS. The attention is focused on designing an observer‐based state feedback controller which ensures that, for all network‐induced delay and packet loss, the resulting error system is exponentially stable and strictly dissipative. The sufficient conditions for existence of controllers are formulated in the form of linear matrix inequalities (LMIs), which can be easily solved using some standard numerical packages. Both observer and controller gains can be obtained by the solutions of set of LMIs. Finally, numerical examples are provided to illustrate the applicability and effectiveness of the proposed method. © 2014 Wiley Periodicals, Inc. Complexity 21: 297–308, 2015  相似文献   

17.
对于非线性模糊系统控制器和观测器的分析和设计,提出一种统一方法。利用Delta域离散T—S模糊模型对非线性系统建模,并基于李雅普诺夫稳定性理论给出模糊状态反馈控制器和观测器的设计策略,将所得结果归结为求解一组线性矩阵不等式。同时结论表明:分离性原理对Delta算子T—S模糊系统仍然成立。所得结果可将现有关于连续和离散T—S模糊系统的相关结论统一于Delta算子框架内。  相似文献   

18.
In this paper, we design an observer-based output feedback controller to exponentially stabilize a system of nonlinear ordinary differential equation-wave partial differential equation-ordinary differential equation. An observer is designed to estimate the full states of the system using available boundary values of the partial differential equation. The output feedback controller is built via the combination of the ordinary differential equation backstepping which is applied to deal with the nonlinear ordinary differential equation, and the partial differential equation backstepping which is used for the wave partial differential equation-ordinary differential equation. The controller can be applied into vibration suppression of a string-payload system driven by an actuator with nonlinear characteristics. The global exponential stability of all states in the closed-loop system is proved by Lyapunov analysis. The numerical simulation illustrates the states of the actuator, string, payload and the observer errors are fast convergent to zero under the proposed output feedback controller.  相似文献   

19.
This study is concerned with the design of a disturbance-observer-based fuzzy terminal sliding mode controller (FTSMC) for multi-input multi-output (MIMO) uncertain nonlinear systems by considering unknown non-symmetric input saturation and control singularity. The disturbance observer is proposed for the unmeasured external disturbance and guarantees the convergence of the disturbance estimation error to zero in a finite time. The terminal sliding mode controller (TSMC) is designed for MIMO uncertain nonlinear systems by utilizing the output of the proposed disturbance observer. This control scheme combines the disturbance-observer-based TSMC with a fuzzy logic system in the presence of unknown non-symmetric input saturation and control singularity in order to reduce chattering phenomena. Finite time asymptotic stability, convergence of the disturbance observer, and convergence of the closed-loop system are proved via Lyapunov stability theorem. In addition, a five-rotor unmanned aerial vehicle (UAV) is employed in the numerical simulations to demonstrate the effectiveness and performance of the proposed control scheme. Disturbance observer estimates the payload and flight endurance of the five-rotor UAV. Genetic algorithm (GA) optimization is used to specify the parameters of the disturbance-observer-based TSMC (GATSMC) to decrease chattering. Finally, the superior performance of FTSMC is investigated over TSMC and GATSMC.  相似文献   

20.
In this paper, an output feedback model predictive tracking control method is proposed for constrained nonlinear systems, which are described by a slope bounded model. In order to solve the problem, we consider the finite horizon cost function for an off-set free tracking control of the system. For reference tracking, the steady state is calculated by solving by quadratic programming and a nonlinear estimator is designed to predict the state from output measurements. The optimized control input sequences are obtained by minimizing the upper bound of the cost function with a terminal weighting matrix. The cost monotonicity guarantees that tracking and estimation errors go to zero. The proposed control law can easily be obtained by solving a convex optimization problem satisfying several linear matrix inequalities. In order to show the effectiveness of the proposed method, a novel slope bounded nonlinear model-based predictive control method is applied to the set-point tracking problem of solid oxide fuel cell systems. Simulations are also given to demonstrate the tracking performance of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号