首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
By on the analyzing the general structure of the Green function of a strongly correlated electron system, it is shown that, for the regime of strong correlations, Luttinger’s theorem should be generalized in the following way: the volume of the Fermi surface of the system of noninteracting particles is equal to that of the quasiparticles in the strongly correlated system with due regard for the spectral weight of the quasiparticles. An investigation of the t-J model and of the Hubbard model, as applied to the paramagnetic nonsuperconducting phase, shows that the generalized Luttinger theorem is valid for these models.  相似文献   

2.
Nóra Kucska 《哲学杂志》2018,98(18):1708-1730
A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin–orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin–orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin–orbit interactions are not present in the literature.  相似文献   

3.
The extension of strongly anisotropic or dynamical scaling to local scale invariance is investigated. For the special case of an anisotropy or dynamical exponent =z=2, the group of local scale transformation considered is the Schrödinger group, which can be obtained as the nonrelativistic limit of the conformal group. The requirement of Schrödinger invariance determines the two-point function in the bulk and reduces the three-point function to a scaling form of a single variable. Scaling forms are also derived for the two-point function close to a free surface which can be either spacelike or timelike. These results are reproduced in several exactly solvable statistical systems, namely the kinetic Ising model with Glauber dynamics, lattice diffusion, Lifshitz points in the spherical model, and critical dynamics of the spherical model with a nonconserved order parameter. For generic values of , evidence from higher-order Lifshitz points in the spherical model and from directed percolation suggests a simple scaling form of the two-point function.  相似文献   

4.
The influence of disorder and pseudogap fluctuations on the Mott insulator-metal transition in strongly correlated systems has been studied in the framework of the generalized dynamic mean field theory (DMFT + Σ approach). Using the results of investigations of the density of states (DOS) and optical conductivity, a phase diagram (disorder-Hubbard interaction-temperature) is constructed for the paramagnetic Anderson-Hubbard model, which allows both the effects of strong electron correlations and the influence of strong disorder to be considered. Strong correlations are described using the DMFT, while a strong disorder is described using a generalized self-consistent theory of localization. The DOS and optical conductivity of the paramagnetic Hubbard model have been studied in a pseudogap state caused by antiferromagnetic spin (or charge) short-range order fluctuations with a finite correlation length, which have been modeled by a static Gaussian random field. The effect of a pseudogap on the Mott insulator-metal transition has been studied. It is established that, in both cases, the static Gaussian random field (related to the disorder or pseudogap fluctuations) leads to suppression of the Mott transition, broadening of the coexistence region of the insulator and metal phases, and an increase in the critical temperature at which the coexistence region disappears.  相似文献   

5.
The formulation of the statistical mechanics of the - phase transition in hydrogenmetal-systems is extended in such a way as to include the elastic anisotropy of the host crystal. The corresponding reduction of symmetry leads to qualitative modifications of the results. Depending on hydrogen concentration and temperature, phases with homogeneous,C 3- andC 2-symmetric equilibrium hydrogen distributions are formed. The transitions between these phases are investigated, and the relation of their orders and the corresponding changes in symmetry is studied. Differences between isotropic and anisotropic systems are discussed.  相似文献   

6.
7.
57Fe Mössbauer spectroscopy has been used to study rare earth intermetallic compounds having strongly correlated electronic properties, where the transition metal carries no magnetic moment. In this case 57Fe is a local probe to detect very small transferred hyperfine fields (B thf) from the rare earth sites.  相似文献   

8.
The question of determining the underlying Fermi surface (FS) that is gapped by superconductivity (SC) is of central importance in strongly correlated systems, particularly in view of angle-resolved photoemission experiments. Here we explore various definitions of the FS in the superconducting state using the zero-energy Green's function, the excitation spectrum, and the momentum distribution. We examine (a) d-wave SC in high-Tc cuprates, and (b) the s-wave superfluid in the BCS-Bose-Einstein condensation (BEC) crossover. In each case we show that the various definitions agree, to a large extent, but all of them violate the Luttinger count and do not enclose the total electron density. We discuss the important role of chemical potential renormalization and incoherent spectral weight in this violation.  相似文献   

9.
Magnetization (down to 1.8 K and up to 9 T) and magnetostriction (down to 4.2 K and up to 30 T) measurements have been performed in the series of polycrystalline intermetallics CeNiSn1?xGex (0≤x≤1), which show a crossover from Kondo-lattice to fluctuating valence behaviors with x increase. Magnetostriction observed can be denominated as “colossal” for a paramagnet (up to 0.68% at 150 K and 30 T), with no sign of saturation. Field, H, induced metamagnetic transitions associated to a change in Ce valence are observed. Three kinds of analysis of magnetostriction have been performed to ascertain the magnetostriction origin. At relatively low field and low temperatures these systems follow well the standard theory of magnetostriction (STM), revealing single-ion crystal field and exchange origins, and a determination of the α-symmetry microscopic magnetoelastic parameters have been performed. The valence transition is well explained in terms of the interconfigurational model, which needs an extension up to power H4. Application of the scaling (thermodynamics corresponding low states) allows the obtainment of the Grüneisen constant, which increases with x. Needed elastic constants measurements are also reported.  相似文献   

10.
We study the performance of Godunov mixed methods, which combine a mixed-hybrid finite element solver and a Godunov-like shock-capturing solver, for the numerical treatment of the advection–dispersion equation with strong anisotropic tensor coefficients. It turns out that a mesh locking phenomenon may cause ill-conditioning and reduce the accuracy of the numerical approximation especially on coarse meshes. This problem may be partially alleviated by substituting the mixed-hybrid finite element solver used in the discretization of the dispersive (diffusive) term with a linear Galerkin finite element solver, which does not display such a strong ill conditioning. To illustrate the different mechanisms that come into play, we investigate the spectral properties of such numerical discretizations when applied to a strongly anisotropic diffusive term on a small regular mesh. A thorough comparison of the stiffness matrix eigenvalues reveals that the accuracy loss of the Godunov mixed method is a structural feature of the mixed-hybrid method. In fact, the varied response of the two methods is due to the different way the smallest and largest eigenvalues of the dispersion (diffusion) tensor influence the diagonal and off-diagonal terms of the final stiffness matrix. One and two dimensional test cases support our findings.  相似文献   

11.
We study the problem of separating the data produced by a given quantum measurement (on states from a memoryless source which is unknown except for its average state), described by a positive operator valued measure (POVM), into a meaningful (intrinsic) and a not meaningful (extrinsic) part. We are able to give an asymptotically tight separation of this form, with the intrinsic data quantified by the Holevo mutual information of a certain state ensemble associated to the POVM and the source, in a model that can be viewed as the asymptotic version of the convex decomposition of POVMs into extremal ones. This result is applied to a similar separation therorem for quantum instruments and quantum operations, in their Kraus form. Finally we comment on links to related subjects: we stress the difference between data and information (in particular by pointing out that information typically is strictly less than data), derive the Holevo bound from our main result, and look at its classical case: we show that this includes the solution to the problem of extrinsic/intrinsic data separation with a known source, then compare with the well–known notion of sufficient statistics. The result on decomposition of quantum operations is used to exhibit a new aspect of the concept of entropy exchange of an open dynamics. An appendix collects several estimates for mixed state fidelity and trace norm distance, that seem to be new, in particular a construction of canonical purification of mixed states that turns out to be valuable to analyze their fidelity.  相似文献   

12.
13.
14.
We review on the effects of the feed mode on pattern selection observed in chemical systems operated in open spatial reactors. In two-side-fed reactors, strong parameter ramps naturally confine patterns in a stratum. The reactor thickness acts both as a genuine bifurcation parameter and on the pattern dimensionality. Depending on that thickness, standard 2D hexagon and stripe Turing patterns or more complex 3D planforms are observed. In thin one-side-fed reactors, patterning process must escape the imposed fixed boundary conditions either by devices introducing mixed boundary conditions or by an intrinsic phenomenon dubbed spatial bistability. We show that in most cases, for a comprehensive understanding of experimental observations, the full 3D aspects have to be taken into account.  相似文献   

15.
We discuss the recently proposed LDA’ + DMFT approach providing a consistent parameter-free treatment of the so-called double counting problem arising within the LDA + DMFT hybrid computational method for realistic strongly correlated materials. In this approach, the local exchange-correlation portion of the electron-electron interaction is excluded from self-consistent LDA calculations for strongly correlated electronic shells, e.g., d-states of transition metal compounds. Then, the corresponding double-counting term in the LDA’ + DMFT Hamiltonian is consistently set in the local Hartree (fully localized limit, FLL) form of the Hubbard model interaction term. We present the results of extensive LDA’ + DMFT calculations of densities of states, spectral densities, and optical conductivity for most typical representatives of two wide classes of strongly correlated systems in the paramagnetic phase: charge transfer insulators (MnO, CoO, and NiO) and strongly correlated metals (SrVO3 and Sr2RuO4). It is shown that for NiO and CoO systems, the LDA’ + DMFT approach qualitatively improves the conventional LDA + DMFT results with the FLL type of double counting, where CoO and NiO were obtained to be metals. Our calculations also include transition-metal 4s-states located near the Fermi level, missed in previous LDA + DMFT studies of these monoxides. General agreement with optical and the X-ray experiments is obtained. For strongly correlated metals, the LDA’ + DMFT results agree well with the earlier LDA + DMFT calculations and existing experiments. However, in general, LDA’ + DMFT results give better quantitative agreement with experimental data for band gap sizes and oxygen-state positions compared to the conventional LDA + DMFT method.  相似文献   

16.
Abstract

Correlations in Gaussian speckle patterns are discussed for the intensity and the phase, as well as for the real and imaginary parts of the wavefunction. Application of the sampling theorem to the wave field is described, and five topologically mandated deterministic rules are enumerated that constrain many aspects of the field structure. A brief overview is given of wave-field correlation matrices containing several million coefficients.  相似文献   

17.
We study a percolative dynamic model for the hexagonal lattice. Random trajectories are generated and their critical behaviour is studied. The critical behaviour corresponds to that of simple percolatio in some of the parameter space, but elsewhere the exponents reveal new universality classes. We calculate the fractal dimension of extended trajectories for different critical points.  相似文献   

18.
We discuss the perturbative aspects of noncommutative quantum mechanics.Then we study Berry‘‘s phase within the framework of noncommutative quantum nechanics.The results show deviations from the usual quantum mechanics,which depend on the parameter of space/space noncommutativity.  相似文献   

19.
In a photonic crystal composed of anisotropic constituents we quantify the range of input angles and the degree of collimation of the beam inside the crystal.The optical properties of a photobleached 4- dimethylamino-N-methyl-4-stilbazolium-tosylate(DAST)crystal are used in our model to demonstrate the efficacy of the self-collimation features.  相似文献   

20.
A systematic study of optical and transport properties of the Hubbard model, based on the Metzner-Vollhardt dynamical mean-field approximation, is reviewed. This model shows interesting anomalous properties that are, in our opinion, ubiquitous to single-band strongly correlated systems (for all spatial dimensions greater than one) and also compare qualitatively with many anomalous transport features of the high-T c cuprates. This anomalous behaviour of the normal-state properties is traced to a ‘collective single-band Kondo effect’, in which a quasiparticle resonance forms at the Fermi level as the temperature is lowered, ultimately yielding a strongly renormalized Fermi liquid at zero temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号