首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ZnO was firstly coated on the surface of aluminum borate whiskers (ABOw) by sol–gel. Then, ZnO-coated ABOw was added into soybean slurry to make a preform with low volume fraction and the preform was sintered at high temperatures to obtain a sufficient strength. ABOw reinforced aluminum composite (ABOw/Al) was fabricated by squeeze casting. Interfacial microstructures, tensile properties, and fracture mechanisms of the ABOw/Al composite were investigated. The results show that the coating of ABOw and the addition of soybean sacrificial filler can effectively decrease the volume fraction of whiskers in the composite. The ultimate tensile strength of composite has not changed much with the decrease of whiskers volume fraction in the composite. However, the elongation to fracture of the composite evidently increases and it can reach 11.1% at room temperature.  相似文献   

2.
The Zn-Al layered double hydroxides (LDH) with Zn/Al molar ratio of 2 were prepared by coprecipitation, followed by hydrothermal treatment at various hydrothermal conditions. The phase transformation was observed, accompanied by drastical morphological changes. As the results indicated, in aqueous system the decomposition product was phase segregated into wurtzite ZnO and spinel ZnAl2O4 by dissolution of the precursor hydroxide followed by recoprecipitation of the oxide phases. As a single-source precursor, LDH facilitated the formation of ZnAl2O4 crystallites and their coating on ZnO nanowires via the inherent linkage through interactions of coordination as well as hydrogen bonding via medium of surface -OH on particles. The addition of ethanol with high vapor tension and low polarity was against the adsorptive attachment of ZnAl2O4 on ZnO but in favor of the crystallization and size decrease of the resulting oxides. Improved crystallization in LDH precursors was beneficial to intensify the interactions to overcome the breaking effect of ethanol, achieving better coating of ZnAl2O4 on ZnO. With the silane grafting of KH570, hydrothermal treatment promoted the formation of four phases by partial decomposition of layered structure of ZnAl-CO3 and new emergence of smectite-like materials with basal spacing of 12.35 Å. As the aging time for LDH precursors gradually elongated, the whole products finally transformed to ultrafine nanorods with mean size of 50 nm in length which were segregated without any type of attachment.  相似文献   

3.
Three kinds of coatings, Ni, Cu and Al2O3, were obtained on the surface of short carbon fibers (SCFs). The interface characteristics and mechanical properties of SCFs/Al composites with the various coatings were systematically studied in this paper. The results showed that, compared to non-coating, Ni or Cu coating improved the wettability of SCFs and Al melt. However, the harmful phases Al3Ni or CuAl2 generated in interface zone and Al matrix result in the lower mechanical properties. Al2O3 coating protected the SCFs and prevented the harmful reaction of Al and SCFs. The interface of Al/Al2O3/SCF without any other phase was clean and well bonded, and the Al2O3-coated SCFs/Al composite had the highest mechanical properties. The interfacial indentation and fracture mechanism of all the composites were analyzed in detail.  相似文献   

4.
Cerium-based conversion coatings on Al18B4O33w/6061Al composite surface were obtained by immersing the composite into a solution containing various concentrations of CeCl3. Results indicate that the susceptibility to pitting for the conversion-coated composites was much lower than that of the untreated composite, and the corrosion resistance of the coated composites was improved markedly; moreover, the concentration of CeCl3 in the cerium solution affects significantly the corrosion behaviors of the coated composites. The coating obtained from a solution containing 7.5 g CeCl3 into 1000 ml produced better corrosion resistance on the composite due to the surface being almost covered by conversion coating. EDX and XPS experimental results indicated that the coatings were made up of oxygen, cerium, and aluminum.  相似文献   

5.
The inorganic colored composite pigments, such as Fe2O3-, Bi4Ti3O12-, and CoAl2O4-coated mica-titania composites, were prepared by hydrolysis of FeCl3, Bi(NO3)3, and Co(NO3)2/Al(NO3)3 in the presence of mica-titania substrate and calcination at different temperatures. The inorganic coating layers on mica-titania substrate surfaces were explored by X-ray diffraction, scanning electron microscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy. Dense and uniform Fe2O3 coating layers were formed on the surfaces of mica-titania substrates. At lower Bi2O3 loading, Bi4Ti3O12 nanoparticles were formed on the surfaces of mica-titania substrates. But at higher Bi2O3 loading, Bi4Ti3O12 nanosheets were formed and perpendicularly oriented to the substrate surfaces. CoAl2O4 nanosheets were formed on the mica-titania substrates and perpendicularly oriented to the substrate surfaces. The pigmentary performances of the inorganic composite pigments were analyzed by CIE, indicating that red, yellow, and blue colored pigments were achieved by coating Fe2O3, Bi4Ti3O12, and CoAl2O4 on mica-titania substrate surfaces, respectively. The pigmentary performances of the inorganic composite pigments were significantly affected by the morphology and loading of inorganic coating layers.  相似文献   

6.
Results from combustion experiments, in which the fuel and oxidizer particle sizes of Al/CuO and Al/MoO3 thermites were varied between the nanometer and micrometer scale, are presented to gain further insight into the factors governing their rate of propagation. The experiments were performed with thermite mixtures loosely packed in an instrumented burn tube. Critical properties, including linear propagation rates, dynamic pressure, and spectral emission, were measured and compared to determine if the scale of one constituent had more influence over the rate of propagation than the other. It was found that, although nano-fuel/nano-oxidizer composites propagated the fastest for both the Al/CuO and Al/MoO3 thermites, composites containing micron-aluminum and a nano-scale oxidizer propagated significantly faster than a composite of nano-aluminum and a micron-scale oxidizer. The impact of nano-scale oxidizer versus nano-scale Al is twofold. Firstly, mixtures containing nano-aluminum have a greater mass percentage of Al2O3, which reduces reaction temperatures and propagation rates. Secondly, reactions in porous nano-thermites propagate through a convective mechanism; with heat transfer being driven by flow induced by large pressure gradients. Mixtures containing nano-scale oxidizer particles show faster pressurization rates. Because the majority of gas generation is due to the decomposition or vaporization of the oxide in these reactions, and oxide particles on the nano-scale have shorter heat-up times and smaller length scales for gas diffusion than micron particles, convective burning is greatly enhanced with the nano-scale oxidizer.  相似文献   

7.
With the solid phase reaction between pulsed-laser-deposited (PLD) ZnO film and α-Al2O3 substrate, ZnAl2O4/α-Al2O3 complex substrates were synthesized. X-ray diffraction (XRD) spectra show that as the reaction proceeds, ZnAl2O4 changes from the initial (111)-oriented single crystal to poly-crystal, and then to inadequate (111) orientation. Corresponding scanning electron microscope (SEM) images indicate that the surface morphology of ZnAl2O4 transforms from uniform islands to stick structures, and then to bulgy-line structures. In addition, XRD spectra present that ZnAl2O4 prepared at low temperature is unstable at the environment of higher temperature. On the as-obtained ZnAl2O4/α-Al2O3 substrates, GaN films were grown without any nitride buffer using light-radiation heating low-pressure MOCVD (LRH-LP-MOCVD). XRD spectra indicate that GaN film on this kind of complex substrate changes fromc-axis single crystal to poly-crystal as ZnAl2O4 layer is thickened. For the single crystal GaN, its full width at half maximum (FWHM) of X-ray rocking curve is 0.4°. Results indicate that islands on thin ZnAl2O4 layer can promote nucleation at initial stage of GaN growth, which leads to the (0001)-oriented GaN film.  相似文献   

8.
In the present study, Fe-Al2O3-FeAl2O4 composite coatings were successfully deposited by reactive plasma sprayed Al/Fe2O3 agglomerated powder. Phase composition and microstructure of the coatings were determined by XRD and SEM. The results indicated that the composite coatings were principally composed of three different phases, i.e. FeAl2O4 phase as main framework, dispersed ball-like Fe-rich phase, and small splats of Al2O3 phase, and it was thought that the in situ synthesized metal phase was helpful to toughen the coating matrix. According to the results of the indentation and frictional wear tests, the composite coating exhibited excellent toughness and anti-friction properties in comparison with conventional Al2O3 monophase coating, though its microhardness value was a little lower than that of Al2O3 coating. The formation mechanism and the toughening mechanism of the composite coating were clarified in detail.  相似文献   

9.
Interfacial reactions and their products in oxidized SiC particle-reinforced Al-Mg matrix composites were investigated using X-ray diffraction and Field EmissionScanning Electron Microscopy (FE-SEM). Observation of the interfacial reaction between oxidized SiC particles and aluminum alloys containing Mg showed that nanoparticles of MgO form initially and do not change form when more than 4 wt. % Mg is in the matrix. However, MgO transforms into octahedral MgAl2O4 crystals when less than 2 wt. % Mg is in the matrix .Comparison of the amounts and the sizes of the reaction products MgAl2O4 and MgO between the Al-Mg alloyswith different matrix compositions shows that fewer MgAl2O4 crystals form at the surface of the particles in the 2014Al matrix composite than in the Al-2 wt. % Mg (Al-2Mg) matrix composite. Also, the size of MgAl2O4 in the former composite is greater than that of the latter composite under the same conditions. However, the amount and the size of MgO crystals that form in the Al-4 wt. % Mg (Al-4Mg) matrix composite is almost the same as that of the Al-8 wt. % Mg (Al-8Mg) composite, and the size of MgO changes a little during heat-treatment at elevated temperatures. The amount of the reaction product (either MgO or MgAl2O4) depends on nucleation rates and density of nucleation sites on the oxidized SiC particles at the initial reaction. The more completely the nuclei cover the surface of the oxidized SiC particles, the smaller the resulting size. According to the results, an addition of Mg into the matrix can be used to control the interfacial characteristics in the oxidized SiC/Al composites. Received: 25 January 2001 / Accepted: 26 January 2001 / Published online: 23 May 2001  相似文献   

10.
《Composite Interfaces》2013,20(3-4):311-324
The fracture and debonding behavior of the Al2O3 layer coated on a ductile aluminum substrate wire was studied experimentally and analytically. When tensile strain was applied, the brittle Al2O3 coating layer showed multiple cracking perpendicular to the tensile axis. After the multiple cracking, compressive fracture of the Al2O3 layer arose in the circumferential direction when the layer was thinner than around 30 μm, while interfacial debonding between the Al2O3 layer and aluminum substrate arose when it was thicker. Such a difference in behavior between thin and thick layers could be accounted for by the difference in the layer thickness-dependence of the tensile radial stress at the interface and the compressive hoop stress of the Al2O3 layer calculated by the finite element method; the former stress increases while the latter one decreases with increasing layer thickness.  相似文献   

11.
Al2O3 and Al2O3-Al composite coatings were prepared by plasma spraying. Phase composition of powders and as-sprayed coatings was determined by X-ray diffraction (XRD), while optical microscopy (OM) and scanning electron microscopy (SEM) were employed to investigate the morphology of impacted droplets, polished and fractured surface, and the element distribution in terms of wavelength-dispersive spectrometer (WDS). Mechanical properties including microhardness, adhesion and bending strength, fracture toughness and sliding wear rate were evaluated. The results indicated that the addition of Al into Al2O3 was beneficial to decrease the splashing of impinging droplets and to increase the deposition efficiency. The Al2O3-Al composite coating exhibited homogeneously dispersed pores and the co-sprayed Al particles were considered to be distributed in the splat boundary. Compared with Al2O3 coating, the composite coating showed slightly lower hardness, whereas the coexistence of metal Al phase and Al2O3 ceramic phase effectively improved the toughness, strength and wear resistance of coatings.  相似文献   

12.
Er and Yb co-doped ZnAl2O4 phosphors were prepared by solution combustion synthesis and the identification of Er and Yb were done by energy-dispersive X-ray analysis (EDX) studies. A luminescence at 1.5 μm, due to the 4I13/24I15/2 transition, has been studied in the NIR region in Er and Yb co-doped ZnAl2O4 phosphors upon 980 nm CW pumping. Er-doped ZnAl2O4 exhibits two thermally stimulated luminescence (TSL) peaks around 174°C and 483°C, while Yb co-doped ZnAl2O4 exhibits TSL peaks around 170°C and 423°C. Electron spin resonance (ESR) studies were carried out to identify defect centres responsible for TSL peaks observed in the phosphors. Room temperature ESR spectrum appears to be a superposition of two distinct centres. These centres are assigned to an O ion and F+ centre. O ion appears to correlate with the 174°C TSL peak and F+ centre appears to relate with the high temperature TSL peak at 483°C in ZnAl2O4:Er phosphor.  相似文献   

13.
张良  姬广富  赵峰  龚自正 《中国物理 B》2011,20(4):47102-047102
This paper performs first-principles calculations to study the structural,mechanical and electronic properties of the spinels ZnAl2O4 ,ZnGa2O4 and ZnCr2O4 ,using density functional theory with the plane-wave pseudopotential method. Our calculations are in good agreement with previous theoretical calculations and the available experimental data. The studies in this paper focus on the evolution of the mechanical properties of ZnAl2O4 ,ZnGa2O4 and ZnCr2O4 under hydrostatic pressure. The results show that the cubic phases of ZnAl2O4 ,ZnGa2O4 and ZnCr2O4 become unstable at about 50 GPa,40 GPa and 25 GPa,respectively. From analysis of the band structure of the three compounds at equilibrium volume,it obtains a direct band gap of 4.35 eV for ZnAl2O4 and 0.89 eV for ZnCr2O4 ,while ZnGa2O4 has an indirect band gap of 2.73 eV.  相似文献   

14.
《Solid State Ionics》2006,177(26-32):2653-2656
Some spinel oxides were mixed during synthesis of LiMn2O4. The solid solutions were formed from MgAl2O4, ZnAl2O4, MgGa2O4, ZnGa2O4, but not from Mg2SnO4 and Zn2SnO4. These solid solutions and composites were examined as cathode materials of lithium batteries. The cycle durability for discharge and charge was found to be improved in these all samples. This was interpreted by an increase in stability of the products, which were the solid solutions or some intergrowth phases in composites, through a stability of additive spinel compounds. In particular, Zn2SnO4−LiMn2O4 systems showed a high retention rate after 100 cycles both at 25 °C and 60 °C.  相似文献   

15.
Ni-Al2O3 composite coatings were prepared by using sediment co-deposition (SCD) technique and conventional electroplating (CEP) technique from Watt's type electrolyte without any additives. The microstructure, hardness, and wear resistance of resulting composites were investigated. The results show that the incorporation of nano-Al2O3 particles changes the surface morphology of nickel matrix. The preferential orientation is modified from (2 0 0) plane to (1 1 1) plane. The microhardness of Ni-Al2O3 composite coatings in the SCD technique are higher than that of the CEP technique and pure Ni coating and increase with the increasing of the nano-Al2O3 particles concentration in plating solution. The wear rate of the Ni-Al2O3 composite coating fabricated via SCD technique with 10 g/l nano-Al2O3 particles in plating bath is approximately one order of magnitude lower than that of pure Ni coating. Wear resistance for SCD obtained composite coatings is superior to that obtained by the CEP technique. The wear mechanism of pure Ni and nickel nano-Al2O3 composite coatings are adhesive wear and abrasive wear, respectively.  相似文献   

16.
Reaction behavior, mechanical property and impact resistance of TiC-TiB2/Al composite reacted from Al-Ti-B4C system with various Al content via combination method of combustion synthesis and hot pressed sintering under air was investigated. Al content was the key point to the variation of mechanical property and impact resistance. Increasing Al content could increase the density, strength and toughness of the composite. Due to exorbitant ceramic content, 10 wt.% and 20 wt.% Al-Ti-B4C composites exhibited poor molding ability and machinability. Flexural strength, fracture toughness, compressive strength and impact toughness of 30–50 wt.% Al-Ti-B4C composite were higher than those of Al matrix. The intergranular fracture dispersed and defused impact load and restricted crack extension, enhancing the impact resistance of the composite. The composite with 50 wt.% Al content owned highest mechanical properties and impact resistance. The results were useful for the application of TiC-TiB2/Al composite in impact resistance field of ceramic reinforced Al matrix composite.  相似文献   

17.
In present work, Cf/Mg-8Gd and SiC+Cf/Mg-8Gd composites were fabricated by squeeze infiltration method. Gd2O3 coating layers were found on the surface of the carbon fibers in these two kinds of the composites, while GdC2 precipitations were found in the hybrid reinforced composite only. Owing to this phenomenon, the coating layer in SiC+Cf/Mg-8Gd composite (88 nm) was much thinner than the one without the SiC particles (160 nm). The Gd2O3 coating layer formed on the surface of carbon fibers can improve the wettability between carbon fibers and magnesium alloy.  相似文献   

18.
In the present work, B4C/2024Al composites with volume fraction of 45% were prepared by a pressure infiltration method. The microstructure of the crater bottom of B4C/2024Al composite after impact was characterized by transmission electron microscope (TEM), which indicated that recovery and dynamic recrystallization generated in Al matrix, and the grain size distribution was about from dozens of nanometer to 200 nm. Furthermore, the plastic deformation was observed in B4C ceramic, which led to the transformation from monocrystal to polycrystal ceramic grains. The boundary observed in this work was high-angle grain boundary and the two grains at the boundary had an orientation difference of 30°.  相似文献   

19.
Al-Al2O3 composite coatings with different Al2O3 particle shapes were prepared on Si and Al substrate by cold spray. The powder compositions of metal (Al) and ceramic (Al2O3) having different sizes and agglomerations were varied into ratios of 10:1 wt% and 1:1 wt%. Al2O3 particles were successfully incorporated into the soft metal matrix of Al. It was found that crater formation between the coatings and substrate, which is typical characteristic signature of cold spray could be affected by initial starting Al2O3 particles. In addition, when the large hard particles of fused Al2O3 were employed, the deep and big craters were generated at the interface between coatings and hard substrates. In the case of pure soft metal coating such as Al on hard substrate, it is very hard to get proper adhesion due to lack of crater formation. Therefore, the composite coating would have certain advantages.  相似文献   

20.
Zinc oxide (ZnO) and alumina (Al2O3) particles are synthesized by the combustion of their volatilized acetylacetonate precursors in a premixed air–methane flame reactor. The particles are characterized by XRD, transmission electron microscopy, scanning mobility particle sizing and by measurement of the BET specific surface area. Pure (-)alumina particles appear as dendritic aggregates with average mobile diameter 43–93 nm consisting of partly sintered, crystalline primary particles with diameter 7.1–8.8 nm and specific surface area 184–229 m2/g. Pure zinc oxide yields compact, crystalline particles with diameter 25–40 nm and specific surface area 27–43 m2/g. The crystallite size for both oxides, estimated from the XRD line broadening, is comparable to or slightly smaller than the primary particle diameter. The specific surface area increases and the primary particle size decreases with a decreasing flame temperature and a decreasing precursor vapour pressure. The combustion of precursor mixtures leads to composite particles consisting of zinc aluminate ZnAl2O4 intermixed with either ZnO or Al2O3 phases. The zinc aluminate particles are dendritic aggregates, resembling the alumina particles, and are evidently synthesized to the full extent allowed by the overall precursor composition. The addition of even small amounts of alumina to ZnO increases the specific surface area of the composites significantly, for example, zinc aluminate particles increases to approximately 150 m2/g. The gas-to-particle conversion is initiated by the fast nucleation of Al2O3 or ZnAl2O3, succeeded by a more gradual condensation of the excess ZnO with a rate probably controlled by the cooling rate for the flame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号