首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the effects of carbon nanotubes (CNT) implantation and sisal fibre size on the electrical properties of sisal fibre-reinforced epoxy composites are reported. For this purpose, the epoxy composites reinforced with CNT-implanted sisal fibre of 5 mm and 10 mm lengths were prepared by hand moulding and samples characterized for their electrical properties, such as dielectric constant (ε′), dielectric dissipation factor (tan δ) and AC conductivity (σac) at different temperatures and frequencies. It was observed that the dielectric constant increases with increase in temperature and decreases with increase in frequency from 500 Hz to 5 KHz. Interestingly, the sample having CNT-implanted sisal fibre of 5 mm length exhibited the highest value of dielectric constant than the one with length 10 mm. This is attributed to the increased surface area of sisal fibre and enhancement of the interfacial polarization. At a constant volume and a length of 5 mm of the fibres, the number of interfaces per unit volume element is high and results in a higher interfacial polarization. The interfaces decrease as the fibre length increases, and therefore, the value of ε′ decreases at 10 mm fibre length. The peak value of the dielectric constant decreases with increasing frequency. A continuous decrease in dissipation factor (tan δ) with increasing frequency for all samples was observed, while at lower temperatures, the values of tan δ remains approximately same. The AC conductivity for 5 mm length sisal epoxy composite and 10 mm length sisal fibre–epoxy composites is higher than that of pure epoxy at all the frequencies.  相似文献   

2.
In this investigation, sisal fibres were treated with the combination of alkali and high intensity ultrasound (HIU) and their effects on the morphology, thermal properties of fibres and mechanical properties of their reinforced PP composites were studied. FTIR and FE-SEM results confirmed the removal of amorphous materials such as hemicellulose, lignin and other waxy materials after the combined treatments of alkali and ultrasound. X-ray diffraction analysis revealed an increase in the crystallinity of sisal fibres with an increase in the concentration of alkali. Thermogravimetric results revealed that the thermal stability of sisal fibres obtained with the combination of both alkali and ultrasound treatment was increased by 38.5 °C as compared to the untreated fibres. Morphology of sisal fibre reinforced composites showed good interfacial interaction between fibres and matrix after the combined treatment. Tensile properties were increased for the combined treated sisal fibres reinforced PP composites as compared to the untreated and pure PP. Tensile modulus and strength increased by more than 50% and 10% respectively as compared to the untreated sisal fibre reinforced composite. It has been found that the combined treatment of alkali and ultrasound is effective and useful to remove the amorphous materials and hence to improve the mechanical and thermal properties.  相似文献   

3.
《Composite Interfaces》2013,20(1-2):141-163
Sisal fibre reinforced composites, one class of a broad range of eco-composite materials, were studied in connection with the effects of fibre surface treatment on their fracture-mechanical properties. Previous investigations on sisal fibre and its composites have been fully reviewed [1], which provided an impetus for this research. Two fibre surface treatment methods, chemical coupling based on silane and oxidization based on permanganate and dicumyl peroxide, together with untreated sisal fiber composites were used to set up different levels of interface bonding strength. The interface effects on the mechanical properties and fracture toughness of sisal fibre reinforced vinyl-ester composites were completely assessed based on the test results obtained and theoretical analyses. Many aspects of studies reported in this paper are original, such as single fiber pull-out tests and toughness evaluation of sisal composites aided by scanning electron microscopy. The results showed that fibre surface treatment could improve interfacial bonding properties between sisal fibre and vinylester resin. These in turn influenced the fracture-mechanical characteristics of this class of ecocomposites.  相似文献   

4.
《Composite Interfaces》2013,20(7-9):753-762
One of the main problems in fabricating natural fibre reinforced polymers is the poor adhesion between intrinsically polar plant fibres and non-polar polymer matrices. We have developed a truly green technique of modifying natural fibre (hemp and sisal) surfaces to improve the interaction between the fibres and polymers by attaching nano-scale bacterial cellulose to the fibre surfaces. These modified natural fibres were then incorporated into the renewable polymers cellulose acetate butyrate (CAB) and poly-L-lactic acid (PLLA). Unidirectional natural fibre reinforced composites were manufactured to investigate the impact of the surface modification on the fibre and interface dominated composite properties. Both the tensile strength parallel as well as perpendicular to the fibres of the composites reinforced by bacterial cellulose modified natural fibres were found to increase significantly, especially in the case of a PLLA matrix. In case of modified sisal reinforced PLLA the parallel strength increases by 44% and the off-axis composite strength by 68%. Scanning electron microscopy observations of the composite fracture surfaces confirm the improved interaction between the fibre and the polymer matrix.  相似文献   

5.
Recently, many studies have been conducted on exploitation of natural materials for modern product development and bioengineering applications. Apart from plant-based materials (such as sisal, hemp, jute, bamboo and palm fibre), animal-based fibre is a kind of sustainable natural materials for making novel composites. Silkworm silk fibre extracted from cocoon has been well recognized as a promising material for bio-medical engineering applications because of its superior mechanical and bioresorbable properties. However, when producing silk fibre reinforced biodegradable/bioresorbable polymer composites, hydrophilic sericin has been found to cause poor interfacial bonding with most polymers and thus, it results in affecting the resultant properties of the composites. Besides, sericin layers on fibroin surface may also cause an adverse effect towards biocompatibility and hypersensitivity to silk for implant applications. Therefore, a proper pre-treatment should be done for sericin removal. Degumming is a surface modification process which allows a wide control of the silk fibre's properties, making the silk fibre possible to be used for the development and production of novel bio-composites with unique/specific mechanical and biodegradable properties. In this paper, a cleaner and environmentally friendly surface modification technique for tussah silk in polymer based composites is proposed. The effectiveness of different degumming parameters including degumming time and temperature on tussah silk is discussed through the analyses of their mechanical and morphological properties. Based on results obtained, it was found that the mechanical properties of tussah silk are affected by the degumming time due to the change of the fibre structure and fibroin alignment.  相似文献   

6.
《Composite Interfaces》2013,20(1-2):77-93
An analysis has been made of the tensile strength of sisal fibres and the interfacial adhesion between fibres and polyester resin droplets. Density and microscopy methods were used to determine the cross-sectional area of the sisal fibres. The average tensile strength of treated sisal fibres decreased by a modest amount following treatment with 0.06 M NaOH. However, this treatment resulted in a substantial increase in the interfacial shear strength at the sisal fibre to polyester resin interface. Weibull analysis has been used successfully to analyse variability in tensile strengths and interfacial shear strength using probability of failure plots. Scanning electron microscopy has revealed the shape of resin droplets on the surface of treated and untreated sisal fibres and contact angles are much lower for droplets on treated fibres. Damage to the surface of fibres has been examined following shear testing. Weibull analysis is an effective tool for characterising highly variable fibre properties and evaluating the level of adhesion between polymer resin and the fibre surface.  相似文献   

7.
《Composite Interfaces》2013,20(7-9):763-786
The dielectric properties, such as dielectric constant, volume resistivity and dielectric loss factor, of sisal/coir hybrid fibre reinforced natural rubber composites have been studied as a function of fibre loading, fibre ratio, frequency, chemical modification of fibres and the presence of a bonding agent. The dielectric constant values have been found to be higher for fibre filled systems than pure natural rubber. This has been attributed to the polarization exerted by the incorporation of fibres into the matrix. Dielectric constant values were observed to be decreased with increase in frequency due to the decreased interfacial and orientation polarization at higher frequencies. Whereas dielectric constant increases with fibre loading because of the increment in number of polar groups after the addition of hydrophilic lignocellulosic fibres. The volume resistivity of the composites was found to be decreased with fibre loading and a percolation threshold has been obtained at 15.6% volume of fibres. Fibre treatment, such as alkali, acetylation, benzoylation, peroxide and permanganate, were carried out to improve the adhesion between fibres and matrix. The dielectric constant values were lower for systems consisting of fibres subjected to chemical treatments due to the increased hydrophobicity of fibres. The addition of a two-component dry bonding agent consisting of hexamethylene tetramine and resorcinol, used for the improvement of interfacial adhesion between the matrix and fibres, reduced the dielectric constant of the composites. When the weight percentage of sisal fibre was increased in the total fibre content of the hybrid composites, the dielectric constant was found to increase. The added fibres and different chemical treatments for them increased the dielectric dissipation factor. A dielectric relaxation has been observed at a frequency of 5 MHz.  相似文献   

8.
9.
《Composite Interfaces》2013,20(7-9):581-604
To tailor the interaction across composite interfaces especially for the development of green composites, i.e. composites made completely from renewable materials, information about the fibre surfaces is required. We review the current state of the art of methods to determine the surface tension of natural fibres and discuss the advantages and disadvantages of techniques used. Although numerous techniques have been employed to characterise surface tension of natural fibres, it seems that commonly used wetting techniques are very much more affected by the non-ideal character of natural fibres. Inverse Gas Chromatography (IGC) is a much better suited technique to determine the surface energetic properties of natural fibres than wetting techniques. The surface tension of natural reinforcements, determined using IGC, was reported for nanosized bacterial cellulose as well as bamboo, cornhusk, flax, hemp and sisal, covering a wide range of cellulose content. The effect of methods to separate/extract fibres from the plants as well as of a few surface modification procedures on the fibre surface properties is also reviewed. The dispersive part of the natural fibre surface tension γ d S varies from 32 to 61 mJ/m2. The fibre surface tension increases with increasing cellulose content of natural fibres. We also found that a higher basicity (Donor Number, K B to Acceptor Number, K Aratio) was observed for fibres containing more cellulose. This may be reflective of higher crystalline cellulose content in the surfaces of the fibres, as only the ether linkage of the cellulose is labile for hydrogen bonding.  相似文献   

10.
Hot-stage microscopy was used to characterise crystal growth at the interface between sisal fibre bundles and a polylactic acid (PLA) matrix in order to better understand the mechanical properties of sisal fibre–PLA composites. Cooling rates and crystallisation temperatures and times were varied to influence crystalline morphology at the interface. Single sisal fibre bundles were evaluated in their as received state or treated with 6 wt.% caustic soda solution for 48?h at room temperature. A microbond shear test was used to characterise the shear strength of the interface as a function of fibre surface treatment. These tests were performed on sisal fibre bundles carefully embedded in flat films of PLA supported on card mounts. Fibre bundles in a PLA matrix were cooled from 180?°C at rates from 2 to 9?°C/min and then crystallised isothermally. For as received fibre bundles uneven growth of PLA spherulites occurred at all cooling rates and crystallisation temperatures. For caustic soda treated fibres, uneven spherulitic growth was observed at crystallisation temperatures at and above 125?°C. In contrast, transcrystalline growth was observed for samples cooled to 120?°C at cooling rates from 2 to 6?°C/min and then allowed to crystallise. The microbond shear strengths of untreated and caustic soda treated fibre bundles were evaluated using Weibull statistics and the caustic soda treated fibres exhibited higher interfacial shear strengths in comparison to untreated fibres, reflecting the development of a transcrystalline layer at the fibre to matrix interface.  相似文献   

11.
《Composite Interfaces》2013,20(7-9):715-731
The mechanical properties of fibre-reinforced polymer composites are largely dependant on the adhesion between the matrix and the fibre. In order to enhance the interaction between flax fibres and unsaturated polyester resins, raw fibres were chemically modified using sodium hydroxide, sodium hydroxide plus acetic anhydride and formic acid-based treatments. The physical properties of the modified fibres were investigated by means of the atomic force microscopy. At first, the morphological analysis of the surfaces shows that after the chemical treatments, the fibres surface appear to be less heterogeneous in topology and smoother. Nonetheless, no significant roughness difference was found between the different treatments. Secondly, adhesion forces measurements were performed between a standard AFM silicon nitride tip and the fibres. The adhesion forces were found to vary according to the chemical treatment. The sodium hydroxide-based treatment was found to increase the adhesion force between the fibre and the AFM tip whereas the lowest adhesion force was found for the formic acid- based treated fibre. These results were attributed to the different hydrophilic character of the modified fibres. Due to the importance of the water layer adsorbed on the fibres, the adhesion forces between the AFM tip and the different samples are found to be mainly dominated by capillary forces in relation with the fibre's surface hydrophilicity.  相似文献   

12.
《Composite Interfaces》2013,20(4-6):377-390
This paper reports the use of a natural fibre, isora, as reinforcement in unsaturated polyester resin. Isora is a bast fibre separated from the bark of Helicteres isora plant by retting process. Properties like tensile strength, flexural strength etc. have been studied as a function of fibre length and fibre loading using treated and untreated fibre. The mechanical properties were found to be optimum at a fibre length of 30 mm and a fibre loading of 30% by volume. The effects of alkali treatment on the fibre properties were investigated by SEM, IR and TGA. The mechanical performance of the treated isora fibre-reinforced polyester composites has also been investigated. SEM studies were carried out to investigate the fibre surface morphology, fibre pull-out and fibre–polyester interface bonding. SEM gave evidence for the changes that had occurred on the fibre surface during chemical treatment. The properties were found to be superior for the composite reinforced with treated fibre compared to the untreated fibre.  相似文献   

13.
This paper reviews recent progress in the nascent field of semiconductor optical fibres, from the fundamentals through to device demonstration. The incorporation of semiconductor materials into both the step‐index and microstructured fibre geometries provides a route to introducing new optoelectronic functionality into existing glass fibre technologies. Herein, the various fabrication methods that have been developed as of to date are described, and their compatibility with the different semiconductor materials and fibre designs discussed. Results will be presented on the optical transmission properties of several fibre types, with particular attention being paid to the observation of nonlinear propagation in silicon core fibres. Finally, some speculation regarding the future prospects and applications of this new class of fibre will be provided.  相似文献   

14.
《Composite Interfaces》2013,20(8):671-683
Dicumyl peroxide (DCP) is commonly applied as a cross-linking agent in polymer processing. The main aim of this work was to assess the ability of DCP to improve adhesion between polylactide (PLA) and flax or hemp fibres by their interphase cross-linking. Short fibre-reinforced PLA composites were manufactured due to the importance of short fibres in injection moulding of high-quality biocomposites. Reactive extrusion of the PLA, flax or hemp fibres, and DCP was performed. The flax or hemp fibre content was 10?wt%, while DCP varied with 0.5 and 2.5?wt%. The fibres and PLA were mechanically mixed, extruded, granulated and injection moulded to form samples for testing. The samples were characterized by differential scanning calorimetry (DSC), tensile and impact strength tests, dynamic mechanical analysis and scanning electron microscopy (SEM). It was found that flax and hemp fibres increased the Young’s modulus while these fibres decreased the impact strength. Addition of DCP led to increase in PLA crystallinity at the interface with fibres which led to further decrease in impact strength. For that reason, it was concluded that DCP is an ineffective agent to improve interphase adhesion between PLA and short flax or hemp fibres.  相似文献   

15.
In this work, a simple and effective method to modify the surface of single sisal fibers with G. xylinum was described. Single fiber tensile strength test, single fiber fragmentation test, thermal gravimetric analyses were conducted to assess the effects of different modification methods (unmodified, NaOH treatment and BC treatment). Fourier transform infrared spectroscopy, scanning electron microscopy and water uptake experiments were employed to characterize the resulting interfacial adhesion. It was shown that BC treatment produced better reinforced polymer composites with improved mechanical and long-term properties. The results also elucidated that BC nanofibrils formed a dense three dimensional network on single sisal fibers covering the roughened surface and filling the grooves and other surface ‘defects’ caused by NaOH modification in addition to its exposed hydroxyl groups to form hydrogen bonds with sisal fiber, all contributed to enhanced mechanical properties of sisal fibers as well as the better binding between sisal fibers and resin matrix. Moreover, this work also confirmed that internal geometrical and morphological differences exist in sisal fibers and this result is insightful for future natural fiber research about the importance of careful selection of fibers for consistent comparisons.  相似文献   

16.
This paper reports on the comprehensive characterisation of heat treated kenaf fibre (KF) and its composites. The kenaf fibres were modified by heating for 2.5–12.5 h inside a drying oven. Heat treatment produces an increase in the crystallinity index and fibre strength of KF. The highest value of KF strength was recorded by applying heat treatment of 10 h on KF. The heat treatment results in the partial removal of impurities/extractives on the KF surface which is detected by scanning electron microscopy and X-ray photoelectron spectroscopy. Atomic force microscopy results signify the decrease of roughness, the increase in peak area density and the increase of the adhesion force on the surface area of heat treated KF. The effect of the heat treatment in enhancing the interface bonding characteristics between the KF and unsaturated polyester matrix can be reflected by the interlaminar shear strength (ILSS) and dynamic mechanical analysis value of the composites. The flexural properties of the composites showed a similar trend to ILSS. However, the fracture toughness revealed contrasting results. Water absorption induced a drastic loss of the mechanical properties of the composites albeit better retention of properties was observed in the case of heat-treated KF composites.  相似文献   

17.
《Composite Interfaces》2013,20(4):343-362
A critical review of previous mechanics models proposed for the evaluation of interfacial properties from single fibre tests is presented with regard to their applicability and limitations. New results which include the effects of some important factors, such as pre-existing fibre flaws. thermal residual stresses and matrix cracks. are provided for a single fibre fragmentation test. By comparing the stress distributions of single fibre fragment and multi-fibre fragment, a basic method to study the multi-fibre composite is introduced in order to relate the interfacial parameters to the mechanical properties of the bulk composite. Some challenging problems on fibre-matrix interfaces are discussed for future research work.  相似文献   

18.
19.
《Composite Interfaces》2013,20(2-3):95-110
In this study, bio-foam composites are produced using short sisal fiber as the reinforcement and modified castor oil as the matrix, respectively. The foam composites with an average cell size of 200 μm possess properties similar to those of commercial polyurethane foams. The effects of fiber loading, fiber length and foam density on the compressive properties of the foam composites are reported in relation to the interfacial interaction. It is found that the addition of chopped sisal alters cell structure of the foam. Surface pre-treatment of sisal by alkali or silane coupling agent helps to improve the mechanical properties and interfacial adhesion. The exposure of the fibers to the gas cells of the foam reduces the effectiveness of interfacial effect, which is different from the case of conventional bulk composites. As a result, the reinforcing ability of sisal fibers becomes a function of fiber length and so on.  相似文献   

20.
《Composite Interfaces》2013,20(7-9):807-820
In recent years, natural fibre composites have received considerable attention as a serious contender to replace glass fibres in composite material applications. One of the key aspects in composite materials is the interface between the reinforcing fibres and the matrix and a critical assessment of the interfacial bond is needed for a successful design of the final component. Natural fibres possess many intriguing advantages over man-made fibres such as glass, but they also present serious difficulties, especially in terms of material heterogeneity and more specifically in terms of fibre diameter. In this sense, most of the traditional methods for interfacial characterisation are difficult to apply, since the required data reduction involves the use of stress analysis or fracture mechanics approaches in which the fibre diameter is a critical parameter. In the present study, interfacial characterisation is discussed for flax fibre/polypropylene composites and a sensitivity analysis is presented for the single fibre fragmentation test. The results indicate that traditional stress analysis fails to correctly assess the interface, whilst a statistical based data analysis can overcome the fibre heterogeneity problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号