首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Consider the countable semilattice T consisting of the recursivelyenumerable Turing degrees. Although T is known to be structurallyrich, a major source of frustration is that no specific, naturaldegrees in T have been discovered, except the bottom and topdegrees, 0 and 0'. In order to overcome this difficulty, weembed T into a larger degree structure which is better behaved.Namely, consider the countable distributive lattice w consistingof the weak degrees (also known as Muchnik degrees) of massproblems associated with non-empty 01 subsets of 2. It is knownthat w contains a bottom degree 0 and a top degree 1 and isstructurally rich. Moreover, w contains many specific, naturaldegrees other than 0 and 1. In particular, we show that in wone has 0 < d < r1 < f(r2, 1) < 1. Here, d is theweak degree of the diagonally non-recursive functions, and rnis the weak degree of the n-random reals. It is known that r1can be characterized as the maximum weak degree of a 01 subsetof 2 of positive measure. We now show thatf(r2, 1) can be characterizedas the maximum weak degree of a 01 subset of 2, the Turing upwardclosure of which is of positive measure. We exhibit a naturalembedding of T into w which is one-to-one, preserves the semilatticestructure of T, carries 0 to 0, and carries 0' to 1. IdentifyingT with its image in w, we show that all of the degrees in Texcept 0 and 1 are incomparable with the specific degrees d,r1, andf(r2, 1) in w.  相似文献   

2.
Cupping the Recursively Enumerable Degrees by D.R.E. Degrees   总被引:2,自引:0,他引:2  
We prove that there are two incomplete d.r.e. degrees (the Turingdegrees of differences of two recursively enumerable sets) suchthat every non-zero recursively enumerable degree cups at leastone of them to 0', the greatest recursively enumerable (Turing)degree. 1991 Mathematics Subject Classification: primary 03D25,03D30; secondary 03D35.  相似文献   

3.
The existence of positive solutions of a second order differentialequation of the form z'+g(t)f(z)=0 (1.1) with the separated boundary conditions: z(0) – ßz'(0)= 0 and z(1)+z'(1) = 0 has proved to be important in physicsand applied mathematics. For example, the Thomas–Fermiequation, where f = z3/2 and g = t–1/2 (see [12, 13, 24]),so g has a singularity at 0, was developed in studies of atomicstructures (see for example, [24]) and atomic calculations [6].The separated boundary conditions are obtained from the usualThomas–Fermi boundary conditions by a change of variableand a normalization (see [22, 24]). The generalized Emden–Fowlerequation, where f = zp, p > 0 and g is continuous (see [24,28]) arises in the fields of gas dynamics, nuclear physics,chemically reacting systems [28] and in the study of multipoletoroidal plasmas [4]. In most of these applications, the physicalinterest lies in the existence and uniqueness of positive solutions.  相似文献   

4.
Every Set has a Least Jump Enumeration   总被引:1,自引:0,他引:1  
Given a computably enumerable set W, there is a Turing degreewhich is the least jump of any set in which W is computablyenumerable, namely 0'. Remarkably, this is not a phenomenonof computably enumerable sets. It is shown that for every subsetA of N, there is a Turing degree, c'µ(A), which is theleast degree of the jumps of all sets X for which A is . In addition this result providesan isomorphism invariant method for assigning Turing degreesto certain torsion-free abelian groups.  相似文献   

5.
In this paper we give answers to some open questions concerninggeneration and enumeration of finite transitive permutationgroups. In [1], Bryant, Kovács and Robinson proved thatthere is a number c' such that each soluble transitive permutationgroup of degree n2 can be generated by elements, and later A. Lucchini [5] extended thisresult (with a different constant c') to finite permutationgroups containing a soluble transitive subgroup. We are nowable to prove this theorem in full generality, and this solvesthe question of bounding the number of generators of a finitetransitive permutation group in terms of its degree. The resultobtained is the following. 1991 Mathematics Subject Classification20B05, 20D60.  相似文献   

6.
Harmonic Analogues of G. R. Maclane's Universal Functions   总被引:1,自引:0,他引:1  
Let E denote the space of all entire functions, equipped withthe topology of local uniform convergence (the compact-opentopology). MacLane [15] constructed an entire function f whosesequence of derivatives (f, f', f', ...) is dense in E; hisconstruction is succinctly presented in a much later note byBlair and Rubel [2], who unwittingly rederived it (see also[3]). We shall call such a function f a universal entire function.In this note we show that analogous universal functions existin the space HN of functions harmonic on RN, where N2. We alsostudy the permissible growth rates of universal functions inHN and show that the set of all such functions is very large. For purposes of comparison, we first review relevant facts aboutuniversal entire functions. The function constructed by MacLaneis of exponential type 1. Duyos Ruiz [7] observed that a universalentire function cannot be of exponential type less than 1. G.Herzog [11] refined MacLane's growth estimate by proving theexistence of a universal entire function f such that |f(z)|=O(rer)as |z|=r. Finally, Grosse–Erdmann [10] proved the followingsharp result.  相似文献   

7.
The cohomology of M(n, d), the moduli space of stable holomorphicbundles of coprime rank n and degree d and fixed determinant,over a Riemann surface of genus g 2, has been widely studiedfrom a wide range of approaches. Narasimhan and Seshadri [17]originally showed that the topology of M(n, d) depends onlyon the genus g rather than the complex structure of . An inductivemethod to determine the Betti numbers of M(n, d) was first givenby Harder and Narasimhan [7] and subsequently by Atiyah andBott [1]. The integral cohomology of M(n, d) is known to haveno torsion [1] and a set of generators was found by Newstead[19] for n = 2, and by Atiyah and Bott [1] for arbitrary n.Much progress has been made recently in determining the relationsthat hold amongst these generators, particularly in the ranktwo, odd degree case which is now largely understood. A setof relations due to Mumford in the rational cohomology ringof M(2, 1) is now known to be complete [14]; recently severalauthors have found a minimal complete set of relations for the‘invariant’ subring of the rational cohomology ofM(2, 1) [2, 13, 20, 25]. Unless otherwise stated all cohomology in this paper will haverational coefficients.  相似文献   

8.
A negative answer to the Kuro–ernikov Question 21 in [7],whether a group satisfying the normalizer condition is hypercentral,was given by Heineken and Mohamed in 1968 [6]. They constructedgroups G satisfying: (i) G is a locally finite p-group for a prime p, (ii) G/G'Cp and G' is countable elementary abelian, (iii) every proper subgroup of G is subnormal and nilpotent, (iv) Z(G)={1}, (v) the set of normal subgroups of G contained in G' is linearlyordered by set inclusion, see [3, p. 334], (vi) KG' is a proper subgroup in G for every proper subgroupK of G, see [6, Lemma 1(a)].  相似文献   

9.
In this paper we show how to associate to any real projectivealgebraic variety Z RPn–1 a real polynomial F1:Rn,0 R, 0 with an algebraically isolated singularity, having theproperty that (Z) = (1 – deg (grad F1), where deg (gradF1 is the local real degree of the gradient grad F1:Rn, 0 Rn,0. This degree can be computed algebraically by the method ofEisenbud and Levine, and Khimshiashvili [5]. The variety Z neednot be smooth. This leads to an expression for the Euler characteristic ofany compact algebraic subset of Rn, and the link of a quasihomogeneousmapping f: Rn, 0 Rn, 0 again in terms of the local degree ofa gradient with algebraically isolated singularity. Similar expressions for the Euler characteristic of an arbitraryalgebraic subset of Rn and the link of any polynomial map aregiven in terms of the degrees of algebraically finite gradientmaps. These maps do involve ‘sufficiently small’constants, but the degrees involved ar (theoretically, at least)algebraically computable.  相似文献   

10.
Let C be a genus 2 algebraic curve defined by an equation ofthe form y2 = x(x2 – 1)(xa)(x – 1/a). Asis well known, the five accessory parameters for such an equationcan all be expressed in terms of a and the accessory parameter b corresponding to a. The main result of the paper is thatif a' = 1 – a2, which in general yields a non-isomorphiccurve C', then b'a'(a'2 – 1) = – – ba(a2– 1). This is proven by it being shown how the uniformizing functionfrom the unit disk to C' can be explicitly described in termsof the uniformizing function for C.  相似文献   

11.
Let G be a group and P be a property of groups. If every propersubgroup of G satisfies P but G itself does not satisfy it,then G is called a minimal non-P group. In this work we studylocally nilpotent minimal non-P groups, where P stands for ‘hypercentral’or ‘nilpotent-by-Chernikov’. In the first case weshow that if G is a minimal non-hypercentral Fitting group inwhich every proper subgroup is solvable, then G is solvable(see Theorem 1.1 below). This result generalizes [3, Theorem1]. In the second case we show that if every proper subgroupof G is nilpotent-by-Chernikov, then G is nilpotent-by-Chernikov(see Theorem 1.3 below). This settles a question which was consideredin [1–3, 10]. Recently in [9], the non-periodic case ofthe above question has been settled but the same work containsan assertion without proof about the periodic case. The main results of this paper are given below (see also [13]).  相似文献   

12.
The fine topology on Rn (n2) is the coarsest topology for whichall superharmonic functions on Rn are continuous. We refer toDoob [11, 1.XI] for its basic properties and its relationshipto the notion of thinness. This paper presents several theoremsrelating the fine topology to limits of functions along parallellines. (Results of this nature for the minimal fine topologyhave been given by Doob – see [10, Theorem 3.1] or [11,1.XII.23] – and the second author [15].) In particular,we will establish improvements and generalizations of resultsof Lusin and Privalov [18], Evans [12], Rudin [20], Bagemihland Seidel [6], Schneider [21], Berman [7], and Armitage andNelson [4], and will also solve a problem posed by the latterauthors. An early version of our first result is due to Evans [12, p.234], who proved that, if u is a superharmonic function on R3,then there is a set ER2x{0}, of two-dimensional measure 0, suchthat u(x, y,·) is continuous on R whenever (x, y, 0)E.We denote a typical point of Rn by X=(X' x), where X'Rn–1and xR. Let :RnRn–1x{0} denote the projection map givenby (X', x) = (X', 0). For any function f:Rn[–, +] andpoint X we define the vertical and fine cluster sets of f atX respectively by CV(f;X)={l[–, +]: there is a sequence (tm) of numbersin R\{x} such that tmx and f(X', tm)l}| and CF(f;X)={l[–, +]: for each neighbourhood N of l in [–,+], the set f–1(N) is non-thin at X}. Sets which are open in the fine topology will be called finelyopen, and functions which are continuous with respect to thefine topology will be called finely continuous. Corollary 1(ii)below is an improvement of Evans' result.  相似文献   

13.
The structural stability of constrained polynomial differentialsystems of the form a(x, y)x'+b(x, y)y'=f(x, y), c(x, y)x'+d(x,y)y'=g(x, y), under small perturbations of the coefficientsof the polynomial functions a, b, c, d, f and g is studied.These systems differ from ordinary differential equations at‘impasse points’ defined by adbc=0. Extensionsto this case of results for smooth constrained differentialsystems [7] and for ordinary polynomial differential systems[5] are achieved here. 1991 Mathematics Subject Classification34C35, 34D30.  相似文献   

14.
Let f:C be a function which is either transcendental meromorphicor rational with degree at least 2. We discuss the uniform perfectnessof the attracting or parabolic cycle of stable domains of f(z),and include a proof that the Julia set of a meromorphic functionof finite type is uniformly perfect. 2000 Mathematics SubjectClassification 37F10, 37F50, 30D05.  相似文献   

15.
One Cubic Diophantine Inequality   总被引:1,自引:0,他引:1  
Suppose that G(x) is a form, or homogeneous polynomial, of odddegree d in s variables, with real coefficients. Schmidt [15]has shown that there exists a positive integer s0(d), whichdepends only on the degree d, so that if s s0(d), then thereis an x Zs\{0} satisfying the inequality |G(x)|<1. (1) In other words, if there are enough variables, in terms of thedegree only, then there is a nontrivial solution to (1). Lets0(d) be the minimum integer with the above property. In thecourse of proving this important result, Schmidt did not explicitlygive upper bounds for s0(d). His methods do indicate how todo so, although not very efficiently. However, in fact muchearlier, Pitman [13] provided explicit bounds in the case whenG is a cubic. We consider a general cubic form F(x) with realcoefficients, in s variables, and look at the inequality |F(x)|<1. (2) Specifically, Pitman showed that if s(1314)256–1, (3) then inequality (2) is non-trivially soluble in integers. Wepresent the following improvement of this bound.  相似文献   

16.
In Merel's recent proof [7] of the uniform boundedness conjecturefor the torsion of elliptic curves over number fields, a keystep is to show that for sufficiently large primes N, the Heckeoperators T1, T2, ..., TD are linearly independent in theiractions on the cycle e from 0 to i in H1(X0(N) (C), Q). In particular,he shows independence when max(D8, 400D4) < N/(log N)4. Inthis paper we use analytic techniques to show that one can chooseD considerably larger than this, provided that N is large.  相似文献   

17.
We focus on a particular class of computably enumerable (c. e.) degrees, the array noncomputable degrees defined by Downey, Jockusch, and Stob, to answer questions related to lattice embeddings and definability in the partial ordering (??, ≤) of c. e. degrees under Turing reducibility. We demonstrate that the latticeM5 cannot be embedded into the c. e. degrees below every array noncomputable degree, or even below every nonlow array noncomputable degree. As Downey and Shore have proved that M5 can be embedded below every nonlow2 degree, our result is the best possible in terms of array noncomputable degrees and jump classes. Further, this result shows that the array noncomputable degrees are definably different from the nonlow2 degrees. We note also that there are embeddings of M5 in which all five degrees are array noncomputable, and in which the bottom degree is the computable degree 0 but the other four are array noncomputable. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Let us say that any (Turing) degree d > 0 satisfies the minimal complementation property (MCP) if for every degree 0 < a < d there exists a minimal degree b < d such that ab = d (and therefore ab = 0 ). We show that every degree d ≥ 0 ′ satisfies MCP. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
On Sets Where Iterates of a Meromorphic Function Zip Towards Infinity   总被引:2,自引:0,他引:2  
For a transcendental meromorphic function f, various propertiesof the set [formula] were obtained in [8] and [9]. Here we establish analogous propertiesfor the smaller sets [formula] introduced in [5], and [formula] We deduce a symmetry result for Julia sets J(f), and also indicatesome techniques for showing that certain invariant curves liein I'(f), Z(f) and J(f). 2000 Mathematics Subject Classification30D05, 37F10, 37F50.  相似文献   

20.
In [2] we discussed almost complex curves in the nearly KählerS6. These are surfaces with constant Kähler angle 0 or and, as a consequence of this, are also minimal and have circularellipse of curvature. We also considered minimal immersionswith constant Kähler angle not equal to 0 or , but withellipse of curvature a circle. We showed that these are linearlyfull in a totally geodesic S5 in S6 and that (in the simplyconnected case) each belongs to the S1-family of horizontallifts of a totally real (non-totally geodesic) minimal surfacein CP2. Indeed, every element of such an S1-family has constantKähler angle and in each family all constant Kählerangles occur. In particular, every minimal immersion with constantKähler angle and ellipse of curvature a circle is obtainedby rotating an almost complex curve which is linearly full ina totally geodesic S5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号