首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Three kinds of polyhedral α‐Fe2O3 nanoparticles enclosed by different facets including oblique parallel hexahedrons (op‐hexahedral NPs), cracked oblique parallel hexahedrons (cop‐hexahedral NPs), and octadecahedral nanoparticles (octadecahedral NPs), were successfully prepared by simply changing only one reaction parameter in the hydrothermal process. The structural and morphological of the products were systematically studied using various characterizations including X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), revealing that the three kinds of α‐Fe2O3 nanoparticles were enclosed by {104}, {110}/{104}, and {102}/{012}/{104} crystal planes, respectively. The exposed facets and shape of the nanocrystals were found to be affected by the adding amount of ethylene glycol in the solvent. The gas‐sensing properties and mechanism of the α‐Fe2O3 samples were studied and analyzed, which indicated that the sensitivity of the three samples followed the order of octadecahedral NPs > cop‐hexahedral NPs > op‐hexahedral NPs due to the combined effects of specific surface area and oxygen defects in the nanocrystals.  相似文献   

2.
A morphology evolution of SnO2 nanoparticles from low‐energy facets (i.e., {101} and {110}) to high‐energy facets (i.e., {111}) was achieved in a basic environment. In the proposed synthetic method, octahedral SnO2 nanoparticles enclosed by high‐energy {111} facets were successfully synthesized for the first time, and tetramethylammonium hydroxide was found to be crucial for the control of exposed facets. Furthermore, our experiments demonstrated that the SnO2 nanoparticles with exposed high‐energy facets, such as {221} or {111}, exhibited enhanced catalytic activity for the oxidation of CO and enhanced gas‐sensing properties due to their high chemical activity, which results from unsaturated coordination of surface atoms, superior to that of low‐energy facets. These results effectively demonstrate the significance of research into improving the physical and chemical properties of materials by tailoring exposed facets of nanomaterials.  相似文献   

3.
Cuprous oxide microcrystals with {111}, {111}/{100}, and {100} exposed facets were synthesized. 31P MAS NMR using trimethylphosphine as the probe molecule was employed to study the acidic properties of samples. It was found that the total acidic density of samples increases evidently after sulfation compared with the pristine cuprous oxide microcrystals. During sulfation, new {100} facets are formed at the expense of {111} facets and lead to the generation of two Lewis acid sites due to the different binding states of SO42− on {111} and {100} facets. Moreover, DFT calculation was used to illustrate the binding models of SO42− on {111} and {100} facets. Also, a Pechmann condensation reaction was applied to study the acidic catalytic activity of these samples. It was found that the sulfated {111} facet has better activity due to its higher Lewis acid density compared with the sulfated {100} facet.  相似文献   

4.
Herein, an electrochemiluminescence (ECL) aptasensor for carcinoembryonic antigen (CEA) detection was developed based on Au-Ag/g-C3N4 nanocomposites (NCs), which were synthesized by decorating graphitic carbon nitride (g-C3N4) nanosheets with alloy-structured Au-Ag bimetallic nanoparticles (NPs) via one-step in situ chemical reduction. As ECL sensing platform, Au-Ag/g-C3N4 NCs could significantly improve the ECL intensity of luminol due to the good conductivity of Au-Ag NPs, electrocatalytic activity for oxygen evolution reaction (OER) and the ability to adsorb luminol via π stacking interaction. In addition, it could load the thiol terminated aptamers of CEA via Au-S or Ag-S bonds. In the presence of CEA, the ECL response of the proposed biosensor decreased significantly due to the fact that the assembled protein layers hindered the electron transfer and the diffusion of ECL reactants toward the electrode surface. The proposed ECL sensor exhibited a good linear relationship with CEA in the range of 1.0–1.0 × 10?6 ng/mL with a detection limit of 8.9 × 10?7 ng/mL. The satisfactory results were obtained in the detection of CEA in human serum samples.  相似文献   

5.
The chemical selectivity and faradaic efficiency of high-index Cu facets for the CO2 reduction reaction (CO2RR) is investigated. More specifically, shape-controlled nanoparticles enclosed by Cu {hk0} facets are fabricated using Cu multilayer deposition at three distinct layer thicknesses on the surface facets of Au truncated ditetragonal nanoprisms (Au DTPs). Au DTPs are shapes enclosed by 12 high-index {310} facets. Facet angle analysis confirms DTP geometry. Elemental mapping analysis shows Cu surface layers are uniformly distributed on the Au {310} facets of the DTPs. The 7 nm Au@Cu DTPs high-index {hk0} facets exhibit a CH4 : CO product ratio of almost 10 : 1 compared to a 1 : 1 ratio for the reference 7 nm Au@Cu nanoparticles (NPs). Operando Fourier transform infrared spectroscopy spectra disclose reactive adsorbed *CO as the main intermediate, whereas CO stripping experiments reveal the high-index facets enhance the *CO formation followed by rapid desorption or hydrogenation.  相似文献   

6.
The design and construction of a bimodal catalyst with magnificent performance and high stability is a debatable one for total water splitting and nitro compound reduction. Herein, we report the synthesis of a covalent organic polymer network based on 1,4-phenylenediamine based covalent organic polymer (PD-COP) and its decoration with Au nanoparticles (Au NPs) as well as their confirmation using various analytical and surface techniques. The electrocatalytic activity toward total water-splitting reaction (OER and HER) in KOH solution (1.0 M) was investigated. In addition, the reduction of aromatic nitro compounds (4-nitrophenol (4-NP) and 2-nitroaniline (2-NA)) was carried out in the presence of NaBH4. Among the different electrocatalysts (PD-COP, Au@PD-COP-I, Au@PD-COP-II, Au@PD-COP-III and Au@PD-COP-IV) studied in this work, the Au@PD-COP-II demands a low overpotential of 288 mV and 184 mV to attain a 50-mA/cm2 geometrical current density with a lowest Tafel slope value of 56 and 85 mV/dec for OER and HER respectively. From the OER and HER phenomenal activity, a two-electrode system was constructed, and it needs a cell voltage of 1.615 V to conquer a current density of 10 mA/cm2 with outstanding stability for 34 h. The high electroactivity of Au@PD-COP-II may be allied with the presence of innumerable redox-active sites and high electrochemical active surface area (ECSA) towards effective water electrolysis. Further, the catalytic activity performed towards the reduction of 4-NP to 4-aminophenol (4-AP) and 2-NA to o-PDA (o-phenylenediamine), Au@PD-COP-II showed good catalytic activity with a reduction time of 20 and 14 min respectively.  相似文献   

7.

The present work presented a synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using the aqueous extract of waste banana stem (WBS), Musa paradisiaca Linn. The reduction and formation of MNPs have been characterized by several analysis techniques such as X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The techniques showed that average particle size of WBS-AgNPs and WBS-AuNPs in crystalline nature was in ranges of 7–13 nm and 11–14 nm, respectively. The synthesized nanoparticles were used to evaluate antibacterial activity and catalysis. The WBS-AgNPs showed strong antibacterial activity against B. subtilis and E. coli. The largest zone of inhibition against B. subtilis (14.2 mm) and E. coli (9.3 mm) was found at concentrations of 4.0 ppm and 2.0 ppm, respectively. The excellent catalytic application of both the nanoparticles for the reduction of 4-nitrophenol was confirmed via study on their kinetics. The normalized kinetic constants (knor) of WBS-AgNPs and WBS-AuNPs were found to be 1.72?×?10–3 s?1 mg?1 and 2.45?×?10–3 s?1 mg?1, respectively.

  相似文献   

8.
In the present paper a pure phase of the copper chromite spinel nanoparticles (CuCr2O4 SNPs) were synthesized via the sol–gel route using citric acid as a complexing agent. Then, the CuCr2O4 SNPs has been characterized by field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). In the next step, with the addition of Cu–Cr–O nanoparticles (NPs), the effects of different parameters such as Cu–Cr–O particle size and the Cu/Cr molar ratios on the thermal behavior of Cu–Cr–O NPs + AP (ammonium perchlorate) mixtures were investigated. As such, the catalytic effect of the Cu–Cr–O NPs for thermal decomposition of AP was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA/DSC results showed that the samples with different morphologies exhibited different catalytic activity in different stages of thermal decomposition of AP. Also, in the presence of Cu–Cr–O nanocatalysts, all of the exothermic peaks of AP shifted to a lower temperature, indicating the thermal decomposition of AP was enhanced. Moreover, the heat released (ΔH) in the presence of Cu–Cr–O nanocatalysts was increased to 1490 J g−1.  相似文献   

9.
The processes of nickel surface anodic oxidation taking place within the range of potentials preceding oxygen evolution reaction (OER) in the solutions of 1 M KOH, 0.5 M K2SO4, and 0.5 M H2SO4 have been analyzed in the present paper. Metallic nickel, thermally oxidized nickel, and black nickel coating were used as Ni electrodes. The methods of cyclic voltammetry and X-ray photoelectron spectroscopy were employed. The study was undertaken with a view to find the evidence of peroxide-type nickel surface compounds formation in the course of OER on the Ni electrode surface. On the basis of experimental results and literature data, it has been suggested that in alkaline solution at E ≈ 1.5 V (RHE) reversible electrochemical formation of Ni(IV) peroxide takes place according to the reaction as follows: This reaction accounts for both the underpotential (with respect to ) formation of O2 from NiOO2 peroxide and also small experimental values of dE/dlgi slope (<60 mV) at low anodic current densities, which are characteristic for the two-electron transfer process. It has been inferred that the composition of the γ-NiOOH phase, indicated in the Bode and revised Pourbaix diagrams, should be ∼5/6 NiOOH + ∼1/6 NiOO2. The schemes demonstrating potential-dependent transitions between Ni surface oxygen compounds are presented, and the electrocatalytic mechanisms of OER in alkaline, acid, and neutral medium have been proposed.  相似文献   

10.
We report the highly facet‐dependent catalytic activity of Cu2O nanocubes, octahedra, and rhombic dodecahedra for the multicomponent direct synthesis of 1,2,3‐triazoles from the reaction of alkynes, organic halides, and NaN3. The catalytic activities of clean surfactant‐removed Cu2O nanocrystals with the same total surface area were compared. Rhombic dodecahedral Cu2O nanocrystals bounded by {110} facets were much more catalytically active than Cu2O octahedra exposing {111} facets, whereas Cu2O nanocubes displayed the slowest catalytic activity. The superior catalytic activity of Cu2O rhombic dodecahedra is attributed to the fully exposed surface Cu atoms on the {110} facet. A large series of 1,4‐disubstituted 1,2,3‐triazoles have been synthesized in excellent yields with high regioselectivity under green conditions by using these rhombic dodecahedral Cu2O catalysts, including the synthesis of rufinamide, an antiepileptic drug, demonstrating the potential of these nanocrystals as promising heterogeneous catalysts for other important coupling reactions.  相似文献   

11.
In this work, TiO2/CdS nanocomposites with co-exposed {101}/[111]-facets (NH4F-TiO2/CdS), {101}/{010} facets (FMA-TiO2/CdS), and {101}/{010}/[111]-facets (HF-TiO2/CdS and Urea-TiO2/CdS) were successfully synthesized through a one-pot solvothermal method by using [Ti4O9]2− colloidal solution containing CdS crystals as the precursor. The crystal structure, morphology, specific surface area, pore size distribution, separation, and recombination of photogenerated electrons/holes of the TiO2/CdS nanocomposites were characterized. The photocatalytic activity and cycling performance of the TiO2/CdS nanocomposites were also investigated. The results showed that as-prepared FMA-TiO2/CdS with co-exposed {101}/{010} facets exhibited the highest photocatalytic activity in the process of photocatalytic degradation of methyl orange (MO), and its degradation efficiency was 88.4%. The rate constants of FMA-TiO2/CdS was 0.0167 min−1, which was 55.7, 4.0, 3.7, 3.5, 3.3, and 1.9 times of No catalyst, CdS, HF-TiO2/CdS, NH4F-TiO2/CdS, CM-TiO2, Urea-TiO2/CdS, respectively. The highest photocatalytic activity of FMA-TiO2/CdS could be attributed to the synergistic effects of the largest surface energy, co-exposed {101}/{010} facets, the lowest photoluminescence intensity, lower charge-transfer resistance, and a higher charge-transfer efficiency.  相似文献   

12.
In the work presented here, well‐dispersed ferric giniite microcrystals with controlled sizes and shapes are solvothermally synthesized from ionic‐liquid precursors by using 1‐n‐butyl‐3‐methylimidazolium dihydrogenphosphate ([Bmim][H2PO4]) as phosphate source. The success of this synthesis relies on the concentration and composition of the ionic‐liquid precursors. By adjusting the molar ratios of Fe(NO3)3 ? 9H2O to [Bmim][H2PO4] as well as the composition of ionic‐liquid precursors, we obtained uniform microstructures such as bipyramids exposing {111} facets, plates exposing {001} facets, hollow spheres, tetragonal hexadecahedron exposing {441} and {111} facets, and truncated bipyamids with carved {001} facets. The crystalline structure of the ferric giniite microcrystals is disclosed by various characterization techniques. It was revealed that [Bmim][H2PO4] played an important role in stabilizing the {111} facets of ferric giniite crystals, leading to the different morphologies in the presence of ionic‐liquid precursors with different compositions. Furthermore, since these ferric giniite crystals were characterized by different facets, they could serve as model Fenton‐like catalysts to uncover the correlation between the surface and the catalytic performance for the photodegradation of organic dyes under visible‐light irradiation. Our measurements indicate that the photocatalytic activity of as‐prepared Fenton‐like catalysts is highly dependent on the exposed facets, and the surface area has essentially no obvious effect on the photocatalytic degradation of organic dyes in the present study. It is highly expected that these findings are useful in understanding the photocatalytic activity of Fenton‐like catalysts with different morphologies, and suggest a promising new strategy for crystal‐facet engineering of photocatalysts for wastewater treatment based on heterogeneous Fenton‐like process.  相似文献   

13.
Condensation reaction of several ketones with pyrrole in the presence of ferric hydrogen sulfate as a green homogenous acidic catalyst furnished the corresponding pure dipyrromethanes in good yields. Gold nanoparticles were produced through reduction of HAuCl4 with substituted dipyrromethanes as new reducing agents at room temperature with the exclusion of any capping agent or surfactant. Gold nanoparticles were characterized by transmission electron microscopy, scanning electron microscopy, XRD and UV–visible absorption spectroscopic measurements. It is proposed that in situ formed oxidative products of dipyrromethane, such as polydipyrromethane could serve effectively as a capping agent to preferably adsorb the {111} facets of gold crystals during the reduction process, which leads to the formation of gold nanoparticles.  相似文献   

14.
A ternary binuclear complex of dysprosium chloride hexahydrate with m-nitrobenzoic acid and 1,10-phenanthroline, [Dy(m-NBA)3phen]2·4H2O (m-NBA: m-nitrobenzoate; phen: 1,10-phenanthroline) was synthesized. The dissolution enthalpies of [2phen·H2O(s)], [6m-HNBA(s)], [2DyCl3·6H2O(s)], and [Dy(m-NBA)3phen]2·4H2O(s) in the calorimetric solvent (VDMSO:VMeOH = 3:2) were determined by the solution–reaction isoperibol calorimeter at 298.15 K to be \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [2phen·H2O(s), 298.15 K] = 21.7367 ± 0.3150 kJ·mol−1, \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [6m-HNBA(s), 298.15 K] = 15.3635 ± 0.2235 kJ·mol−1, \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [2DyCl3·6H2O(s), 298.15 K] = −203.5331 ± 0.2200 kJ·mol−1, and \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [[Dy(m-NBA)3phen]2·4H2O(s), 298.15 K] = 53.5965 ± 0.2367 kJ·mol−1, respectively. The enthalpy change of the reaction was determined to be \Updelta\textr H\textmq = 3 6 9. 4 9 ±0. 5 6   \textkJ·\textmol - 1 . \Updelta_{\text{r}} H_{\text{m}}^{\theta } = 3 6 9. 4 9 \pm 0. 5 6 \;{\text{kJ}}\cdot {\text{mol}}^{ - 1} . According to the above results and the relevant data in the literature, through Hess’ law, the standard molar enthalpy of formation of [Dy(m-NBA)3phen]2·4H2O(s) was estimated to be \Updelta\textf H\textmq \Updelta_{\text{f}} H_{\text{m}}^{\theta } [[Dy(m-NBA)3phen]2·4H2O(s), 298.15 K] = −5525 ± 6 kJ·mol−1.  相似文献   

15.
Exposure of anisotropic crystal facets allows the directional transfer of photoexcited electrons (e?) and holes (h+), for spatial charge separation. High‐index facets with a high density of low‐coordinated atoms always serve as reactive catalytic sites. However, preparation of multi‐facets or high‐index facets is highly challenging for layered bismuth‐based photocatalysts. Herein, we report the preparation of unprecedented eighteen‐faceted BiOCl with {001} top facets and {102} and {112} oblique facets via a hydrothermal process. Compared to the conventional BiOCl square plates with {001} top facets and {110} lateral facets, the eighteen‐faceted BiOCl has highly enhanced photocatalytic activity for H2 evolution and hydroxyl radicals (.OH) production. Theoretical calculations and photodeposition results disclose that the of eighteen‐faceted BiOCl has a well‐matched {001}/{102}/{112} ternary facet junction, which provides a cascade path for more efficient charge flow than the binary facet junction in BiOCl square plates.  相似文献   

16.
Ultrathin TiO2 nanosheets with coexposed {001}/{101} facets have attracted considerable attention because of their high photocatalytic activity. However, the charge-separated states in the TiO2 nanosheets must be extended to further enhance their photocatalytic activity for H2 evolution. Herein, we present a successful attempt to selectively dope lanthanide ions into the {101} facets of ultrathin TiO2 nanosheets with coexposed {001}/{101} facets through a facile one-step solvothermal method. The lanthanide doping slightly extended the light-harvesting region and markedly improved the charge-separated states of the TiO2 nanosheets as evidenced by UV-vis absorption and steady-state/transient photoluminescence spectra. Upon simulated sunlight irradiation, we observed a 4.2-fold enhancement in the photocatalytic H2 evolution activity of optimal Yb3+-doped TiO2 nanosheets compared to that of their undoped counterparts. Furthermore, when Pt nanoparticles were used as cocatalysts to reduce the H2 overpotential in this system, the photocatalytic activity enhancement factor increased to 8.5. By combining these results with those of control experiments, we confirmed that the extended charge-separated states play the main role in the enhancement of the photocatalytic H2 evolution activity of lanthanide-doped TiO2 nanosheets with coexposed {001}/{101} facets.  相似文献   

17.
The standard molar Gibbs free energy of formation of YRhO3(s) has been determined using a solid-state electrochemical cell wherein calcia-stabilized zirconia was used as an electrolyte. The cell can be represented by: ( - )\textPt - Rh/{ \textY2\textO\text3( \texts ) + \textYRh\textO3( \texts ) + \textRh( \texts ) }//\textCSZ//\textO2( p( \textO2 ) = 21.21  \textkPa )/\textPt - Rh( + ) \left( - \right){\text{Pt - Rh/}}\left\{ {{{\text{Y}}_2}{{\text{O}}_{\text{3}}}\left( {\text{s}} \right) + {\text{YRh}}{{\text{O}}_3}\left( {\text{s}} \right) + {\text{Rh}}\left( {\text{s}} \right)} \right\}//{\text{CSZ//}}{{\text{O}}_2}\left( {p\left( {{{\text{O}}_2}} \right) = 21.21\;{\text{kPa}}} \right)/{\text{Pt - Rh}}\left( + \right) . The electromotive force was measured in the temperature range from 920.0 to 1,197.3 K. The standard molar Gibbs energy of the formation of YRhO3(s) from elements in their standard state using this electrochemical cell has been calculated and can be represented by: D\textfG\texto{ \textYRh\textO3( \texts ) }/\textkJ  \textmo\textl - 1( ±1.61 ) = - 1,147.4 + 0.2815  T  ( \textK ) {\Delta_{\text{f}}}{G^{\text{o}}}\left\{ {{\text{YRh}}{{\text{O}}_3}\left( {\text{s}} \right)} \right\}/{\text{kJ}}\;{\text{mo}}{{\text{l}}^{ - 1}}\left( {\pm 1.61} \right) = - 1,147.4 + 0.2815\;T\;\left( {\text{K}} \right) . Standard molar heat capacity Cop,m C^{o}_{{p,m}} (T) of YRhO3(s) was measured using a heat flux-type differential scanning calorimeter in two different temperature ranges from 127 to 299 K and 305 to 646 K. The heat capacity in the higher temperature range was fitted into a polynomial expression and can be represented by: $ {*{20}{c}} {\mathop C\nolimits_{p,m}^{\text{o}} \left( {{\text{YRh}}{{\text{O}}_3},{\text{s,}}T} \right)\left( {{\text{J}}\;{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)} & { = 109.838 + 23.318 \times {{10}^{ - 3}}T\left( {\text{K}} \right)} & { - 12.5964 \times {{10}^5}/{T^2}\left( {\text{K}} \right).} \\ {} & {\left( {305 \leqslant T\left( {\text{K}} \right) \leqslant 646} \right)} & {} \\ $ \begin{array}{*{20}{c}} {\mathop C\nolimits_{p,m}^{\text{o}} \left( {{\text{YRh}}{{\text{O}}_3},{\text{s,}}T} \right)\left( {{\text{J}}\;{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)} & { = 109.838 + 23.318 \times {{10}^{ - 3}}T\left( {\text{K}} \right)} & { - 12.5964 \times {{10}^5}/{T^2}\left( {\text{K}} \right).} \\ {} & {\left( {305 \leqslant T\left( {\text{K}} \right) \leqslant 646} \right)} & {} \\ \end{array} The heat capacity of YRhO3(s) was used along with the data obtained from the electrochemical cell to calculate the standard enthalpy and entropy of formation of the compound at 298.15 K.  相似文献   

18.
Chitosan (CS) was chosen for dispersing multi‐wall carbon nanotubes (MWNTs) to form a stable CS‐MWNTs composite, which was first coated on the surface of a glassy carbon electrode to provide a containing amino groups interface for assembling colloidal gold nanoparticles (GNPs), followed by the adsorption of hemoglobin (Hb). Repeating the assembly step of GNPs and Hb resulted in {Hb/GNPs}n multilayers. The assembly of GNPs onto CS‐MWNTs composites was confirmed by transmission electron microscopy. The consecutive growth of {Hb/GNPs}n multilayers was confirmed by cyclic voltammetry and UV‐vis absorption spectroscopy. The resulting system brings a new platform for electrochemical devices by using the synergistic action of the electrocatalytic activity of GNPs and MWNTs. The resulting biosensor displays an excellent electrocatalytic activity and rapid response for hydrogen peroxide. The linear range for the determination of H2O2 was from 5.0×10?7 to 2.0×10?3 M with a detection limit of 2.1×10?7 M at 3σ and a Michaelis–Menten constant KMapp value of 0.19 mM.  相似文献   

19.
Using three accurate potential energy surfaces of the 3A″, 3A′, and 1A′ states constructed recently, we present a quasi-classical trajectory (QCT) calculation for O + HCl (v = 0, j = 0)  OH + Cl reaction at the collision energies (E col) of 14.0–20.0 kcal/mol. The three angular distribution functions—P(qr ) P(\theta_{r} ) , P(jr ) P(\varphi_{r} ) , and P(qr ,jr ) P(\theta_{r} ,\varphi_{r} ) , together with the four commonly used polarization-dependent differential cross-sections, \frac2ps \fracds00 dwt , \frac2ps \fracds20 dwt , \frac2ps \fracds22 + dwt , \textand \frac2ps \fracds21 - dwt {\frac{2\pi }{\sigma }}\,{\frac{{d\sigma_{00} }}{{d\omega_{t} }}},\,{\frac{2\pi }{\sigma }}\,{\frac{{d\sigma_{20} }}{{d\omega_{t} }}},\,{\frac{2\pi }{\sigma }}\,{\frac{{d\sigma_{22 + } }}{{d\omega_{t} }}},\,{\text{and}}\,{\frac{2\pi }{\sigma }}\,{\frac{{d\sigma_{21 - } }}{{d\omega_{t} }}} are exhibited to get an insight into the alignment and the orientation of the product OH radical. There is a similar behavior of the tendency scattering direction for the two triplet electronic states (3A″ and 3A′)—backward scattering dominates, however, forward scattering prevails for the case of 1A′ state. Also, obvious differences have been found in the stereo-dynamical information, which reveals the influences of the potential energy surface and the collision energy. The degrees of polarization and the influence of the collision energy on the stereo-dynamics characters of the title reaction are both demonstrated in the order of 3A′ > 3A″ > 1A′.  相似文献   

20.
《化学:亚洲杂志》2017,12(3):293-297
Ag2O cubes, truncated octahedra, rhombic dodecahedra, and rhombicuboctahedra were synthesized in aqueous solution. Two tungsten probes were brought into contact with a single particle for electrical conductivity measurements. Strongly facet‐dependent electrical conductivity behaviors have been observed. The {111} faces are most conductive. The {100} faces are moderately conductive. The {110} faces are nearly non‐conductive. When electrodes contacted two different facets of a rhombicuboctahedron, asymmetrical I–V curves were obtained. The {111} and {110} combination gives the best I–V curve expected for a p‐n junction with current flowing in one direction through the crystal but not in the opposite direction. Density of states (DOS) plots for varying number of different lattice planes of Ag2O match with the experimental results, suggesting that the {111} faces are most electrically conductive. The thicknesses of the thin surface layer responsible for the facet‐dependent properties of Ag2O crystals have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号