首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymer electrolytes based on poly N-vinyl pyrrolidone (PVP) and ammonium thiocyanate (NH4SCN) with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The shift in Tg values and the melting temperatures of the PVP-NH4SCN electrolytes shown by DSC thermo-grams indicate an interaction between the polymer and the salt. The dependence of Tg and conductivity upon salt concentration have been discussed. The conductivity analysis shows that the 20 mol% ammonium thiocyanate doped polymer electrolyte exhibit high ionic conductivity and it has been found to be 1.7 × 10−4 S cm−1, at room temperature. The conductivity values follow the Arrhenius equation and the activation energy for 20 mol% ammonium thiocyanate doped polymer electrolyte has been found to be 0.52 eV.  相似文献   

2.
Polyacrylonitrile (PAN)-based polymer electrolytes have obtained considerable attention due to their fascinating characteristics such as appreciable ionic conductivity at ambient temperatures and mechanical stability. This study is based on the system PAN–ethylene carbonate (EC)–propylene carbonate (PC)–lithium trifluoromethanesulfonate (LiCF3SO3). The composition 15 mol% PAN–42 mol% EC–36 mol% PC–7 mol% LiCF3SO3 has shown a maximum room temperature conductivity of 1.2?×?10?3 S cm?1. Also, it was possible to make a thin, transparent film out of that composition. Cells of the form, Li/PAN–EC–PC–LiCF3SO3/polypyrrole (PPy)–alkylsulfonate (AS) were investigated using cyclic voltammetry and continuous charge–discharge tests. When cycled at low scan rates, a higher capacity could be obtained and well-defined peaks were present. The appearance of peaks elucidates the fact that redox reactions occur completely. This well proves the reason for higher capacity. The average specific capacity was about 43 Ah kg?1. Cells exhibited a charge factor close to unity during continuous charging and discharging, indicating the absence of parasitic reactions.  相似文献   

3.
Carbon-13 NMR spin-lattice relaxation times T1 of poly(N-vinyl pyrrolidone) (PVP) and PVP-iodine have been studied in several solvents and at different temperatures. Three kinds of motion can be identified from the T1 data: segmental motion, ring rotation, and ring puckering. The effective correlation time for segmental motion is calculated to be 1 × 10?9s, in good agreement with published proton NMR data. Another solvent, 1,1,2,2-tetrachloroethane, behaves like D2O, the segmental correlation time being 3 × 10?9s. In benzene, however, the linewidths are very broad and tend to narrow with increasing temperature, but the T1s are not very different from those of PVP in D2O. The results suggest association of pyrrolidone rings in benzene that reduces chain dimensions and also restricts chain mobility. As for PVP-iodine in water, again broad resonances are observed which sharpen considerably at higher temperatures. The result agrees with previous suggestions of specific interactions between the pyrrolidone group and iodine.  相似文献   

4.
The construction of nanostructured ion-transport channels is highly desirable in the design of advanced electrolyte materials,as it can enhance ion conductivity by offering short ion-transport pathways.In this work,we present a supramolecular strategy to fabricate a nanocomposite electrolyte containing highly ordered lamellar proton-conducting nanochannels,by the electrostatic self-assembly of a polyoxometalate H_3 PW_(12)O_(4 O)(PW) and a comb copolymer poly(4-methlstyrene)-graft-poly(N-vinyl pyrrolidone).PW can effectively regulate the self-assembling order of polymer moieties to form a large-ra nge lamellar structure,meanwhile,introducing protons into the nanoscale lamellar domains to build proton transport channels.Moreover,the rigid PW clusters contribute a remarkable mechanical reinforcement to the nanocomposites.The lamellar nanocomposite exhibits a conductivity of 4.3 × 10~(-4) S/cm and a storage modulus of 1.1 × 10~7 Pa at room temperature.This study provides a new strategy to construct nanostructured ion-conductive pathways in electrolyte materials.  相似文献   

5.
Solid polymer electrolyte membranes were prepared by complexing tetrapropylammoniumiodide (Pr4N+I?) salt with polyethylene oxide (PEO) plasticized with ethylene carbonate (EC), and these were used in photoelectrochemical (PEC) solar cells fabricated with the configuration glass/FTO/TiO2/dye/electrolyte/Pt/FTO/glass. The PEO/Pr4N+I?+I2?=?9:1 ratio gave the best room temperature conductivity for the electrolyte. For this composition, the plasticizer EC was added to increase the conductivity, and a further conductivity enhancement of four orders of magnitude was observed. An abrupt increase in conductivity occurs around 60–70 wt% EC; the room temperature conductivity was 5.4?×?10?7 S cm?1 for 60 wt% EC and 4.9?×?10?5 S cm?1 for the 70 wt% EC. For solar cells with electrolytes containing PEO/Pr4N+I?+I2?=?9:1 and EC, IV curves and photocurrent action spectra were obtained. The photocurrent also increased with increasing amounts of EC, up to three orders of magnitude. However, the energy conversion efficiency of this cell was rather low.  相似文献   

6.
Solid polymer electrolytes based on poly(vinyl pyrrolidone) (PVP) complexed with potassium periodide (KIO4) salt at different weight percent ratios were prepared using solution-cast technique. X-ray diffraction (XRD) results revealed that the amorphous nature of PVP polymer matrix increased with the increase of KIO4 salt concentration. The complexation of the salt with the polymer was confirmed by Fourier transform infrared (FTIR) spectroscopy studies. The ionic conductivity was found to increase with the increase of temperature as well as dopant concentration. The maximum ionic conductivity (1.421 × 10−4 S cm−1) was obtained for 15 wt% KIO4 doped polymer electrolyte at room temperature. The variation of ac conductivity with frequency obeyed Jonscher power law. The dynamical aspects of electrical transport process in the electrolyte were analyzed using complex electrical modulus. The peaks found in the electric modulus plots have been characterized in terms of the stretched exponential parameter. Optical absorption studies were performed in the wavelength range 200–600 nm and the absorption band energies (direct band gap and indirect band gap) values were evaluated. Using these polymer electrolyte films electrochemical cells were fabricated and their discharge characteristics were studied.  相似文献   

7.
The polymer electrolytes based on chitosan and ammonium acetate (CH3COONH4) were prepared by solution casting technique and the properties were studied. With the addition of CH3COONH4, the amorphous nature of the polymer electrolytes was promoted. The glass transition temperature, activation energy, and conductivity are closely related. Lower the glass transition temperature, lower the activation energy, higher the conductivity. The 40 wt % ammonium acetate doped polymer electrolyte has the lowest glass transition temperature of 369 K, the lowest activation energy of 0.19 eV, and the highest ionic conductivity of 2.87 × 10?4 S cm?1 at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 549–554, 2009  相似文献   

8.
The Li(Ni0.33Co0.33Mn0.33)O2 (LNCMO) cathode material is prepared by poly(vinyl pyrrolidone) (PVP)-assisted sol-gel/hydrothermal and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly (ethylene glycol) (Pluronic-P123)-assisted hydrothermal methods. The compound prepared by PVP-assisted hydrothermal method shows a comparatively higher electrical conductivity of ~2?×?10?5 S cm?1 and exhibits a discharge capacity of 152 mAh g?1 in the voltage range of 2.5 to 4.4 V, for a C-rate of 0.2 C, whereas the compounds prepared by P123-assisted hydrothermal method and PVP-assisted sol-gel method show a total electrical conductivity in the order of 10?6 S cm?1 and result in poor electrochemical performance. The structural and electrical properties of LNCMO (active material) and its electrochemical performance are correlated. The difference in percentage of ionic and electronic conductivity contribution to the total electrical conductivity is compared by transference number studies. The cation disorder is found to be the limiting factor for the lithium ion diffusion as determined from ionic conductivity values.  相似文献   

9.
The present investigation deals with electrochemical double layer capacitors (EDLCs) made up of ionic liquid (IL)-based gel polymer electrolytes with chemically treated activated charcoal electrodes. The gel polymer electrolyte comprising of poly(vinylidine fluoride-co-hexafluropropylene) (PVdF-HFP)–1-ethyl-2,3-dimethyl-imidazolium-tetrafluroborate [EDiMIM][BF4]–propylene carbonate (PC)–magnesium perchlorate (Mg(ClO4)2) exhibits the highest ionic conductivity of ~8.4?×?10?3?S?cm?1 at room temperature (~20 °C), showing good mechanical and dimensional stability, suitable for their application in EDLCs. Activation of charcoal was done by impregnation method using potassium hydroxide (KOH) as activating agent. Brunauer–Emmett–Teller (BET) studies reveal that the effective surface area of treated activated charcoal powder (1,515 m2?g?1) increases by more than double-fold compared to the untreated one (721 m2?g?1). Performance of EDLCs has been tested using cyclic voltammetry, impedance spectroscopy, and charge–discharge techniques. Analysis shows that chemically treated activated charcoal electrodes have almost triple times more capacitance values as compared to the untreated one.  相似文献   

10.
Binary blends and pseudo complexes of cellulose acetate (CA) with vinyl polymers containing N-vinyl pyrrolidone (VP) units, poly(N-vinyl pyrrolidone) (PVP) and poly(N-vinyl pyrrolidone-co-vinyl acetate) [P(VP-co-VAc)], were prepared, respectively, by casting from mixed polymer solutions in N,N-dimethylformamide as good solvent and by spontaneous co-precipitation from solutions in tetrahydrofuran as comparatively poor solvent. The scale of miscibility and intermolecular interaction were examined for the blends and complexes by solid-state 13C-NMR spectroscopy. It was revealed that the formation of complexes was due to a higher frequency of hydrogen-bonding interactions between the residual hydroxyl groups of CA and the carbonyl groups of VP residues in the vinyl polymer component. From measurements of CP/MAS spectra and proton spin-lattice relaxation times (TH) in the NMR study, the existence of the hydrogen-bonding interaction was also confirmed for the miscible blends and the homogeneity of the mixing was estimated to be substantially on a scale within a few nanometers.  相似文献   

11.
The present work describes the synthesis and characterization of gel polymer electrolytes containing methanesulfonic acid (MSA) with Polyacrylamide (PAAm). The PAAm–MSA gel electrolytes were prepared with different concentrations of MSA. Addition of 0.5 M of MSA into the electrolyte increased the ionic conductivity of PAAm from 1.35 × 10?3 to 1.56 × 10?2 S cm?1. The maximum ionic conductivity of 7.0 × 10?1 S cm?1 was obtained with 3 M MSA at room temperature. The chemical interaction between PAAm and MSA was studied by Fourier transformed infra-red. The performance as a polymer electrolyte was evaluated from the cell discharge and open circuit potential measurements of a tin-air cell. The tin-air cell supported relatively high current, up to 12 mA cm?2 with a maximum power density of 5 mW cm?2. The open-circuit potential of the cell was 1.27 V for 24 h.  相似文献   

12.
The preparation and characterization of blended solid polymer electrolyte 49% poly(methyl methacrylate)-grafted natural rubber (MG49):poly(methyl methacrylate) (PMMA) (30:70) were carried out. The effect of lithium tetrafluoroborate (LiBF4) concentration on the chemical interaction, structure, morphology, and room temperature conductivity of the electrolyte were investigated. The electrolyte samples with various weight percentages (wt.%) of LiBF4 salt were prepared by solution casting technique and characterized by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy. Infrared analysis demonstrated that the interaction between lithium ions and oxygen atoms occurred at symmetrical stretching of carbonyl (C=O) (1,735 cm?1) and asymmetric deformation of (O–CH3) (1,456 cm?1) via the formation of coordinate bond on MMA structure in MG49 and PMMA. The reduction of MMA peaks intensity at the diffraction angle, 2θ of 29.5° and 39.5° was due to the increase in weight percent of LiBF4. The complexation occurred between the salt and polymer host had been confirmed by the XRD analysis. The semi-crystalline phase of polymer host was found to reduce with the increase in salt content and confirmed by XRD analysis. Morphological studies by SEM showed that MG49 blended with PMMA was compatible. The addition of salt into the blend has changed the topological order of the polymer host from dark surface to brighter surface. The SEM analyses supported the enhancement of conductivity with the addition of salt. The conductivity increased drastically from 2.0 to 3.4?×?10?5 S cm?1 with the addition of 25 wt.% of salt. The increase in the conductivity was due to the increasing of the number of charge carriers in the electrolyte. The conductivity obeys Arrhenius equation in higher temperature region from 333 to 373 K with the pre-exponential factor σ o of 1.21?×?10?7 S cm?1 and the activation energy E a of 0.46 eV. The conductivity is not Arrhenian in lower temperature region from 303 to 323 K.  相似文献   

13.
Solid polymer electrolytes (SPE), based on polyoctahedral silsesquioxanes (POSS) as a crosslinking agent, were prepared by radical polymerization. The ionic conductivity is greatly enhanced by introduction of crosslinkable POSS with multifunctional groups. The SPE prepared with 5 wt.% crosslinking agent shows an ionic conductivity of 5.3?×?10?4 S cm?1 at room temperature. The content of nonvolatile plasticizer, poly(ethylene glycol) dimethyl ether, in the SPE, could be raised to 95 wt.% without any leakage. The SPE is found to be electrochemically stable up to 5.3 V. Lithium polymer cell consisting of Li/SPE/LiCoO2 exhibits 80% of initial discharge capacity even at the rate of 0.1 C at room temperature after 20 cycles, which is a substantial improvement for practical consideration of lithium polymer batteries at room temperature.  相似文献   

14.
A new plasticized nanocomposite polymer electrolyte based on poly (ethylene oxide) (PEO)-LiTf dispersed with ceramic filler (Al2O3) and plasticized with propylene carbonate (PC), ethylene carbonate (EC), and a mixture of EC and PC (EC+PC) have been studied for their ionic conductivity and thermal properties. The incorporation of plasticizers alone will yield polymer electrolytes with enhanced conductivity but with poor mechanical properties. However, mechanical properties can be improved by incorporating ceramic fillers to the plasticized system. Nanocomposite solid polymer electrolyte films (200–600 μm) were prepared by common solvent-casting method. In present work, we have shown the ionic conductivity can be substantially enhanced by using the combined effect of the plasticizers as well as the inert filler. It was revealed that the incorporating 15 wt.% Al2O3 filler in to PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity [σ RT (max)?=?7.8?×?10?6 S cm?1]. It was interesting to observe that the addition of PC, EC, and mixture of EC and PC to the PEO: LiTf: 15 wt.% Al2O3 CPE showed further conductivity enhancement. The conductivity enhancement with EC is higher than PC. However, mixture of plasticizer (EC+PC) showed maximum conductivity enhancement in the temperature range interest, giving the value [σ RT (max)?=?1.2?×?10?4 S cm?1]. It is suggested that the addition of PC, EC, or a mixture of EC and PC leads to a lowering of glass transition temperature and increasing the amorphous phase of PEO and the fraction of PEO-Li+ complex, corresponding to conductivity enhancement. Al2O3 filler would contribute to conductivity enhancement by transient hydrogen bonding of migrating ionic species with O–OH groups at the filler grain surface. The differential scanning calorimetry thermograms points towards the decrease of T g , crystallite melting temperature, and melting enthalpy of PEO: LiTf: Al2O3 CPE after introducing plasticizers. The reduction of crystallinity and the increase in the amorphous phase content of the electrolyte, caused by the filler, also contributes to the observed conductivity enhancement.  相似文献   

15.
A novel solid-state selective sensor for mono-hydrogen phosphate (HPO4)?2 based on copper monoamino phthalocyanine (CuMAPc) ionophore covalently attached to poly (n-butyl acrylate) (PnBA) has been developed and potentiometrically evaluated. The all solid-state sensor was constructed by the application of a thin film of a polymer cocktail containing a CuMAPc–PBDA ionophore and benzyl-dimethylhexadecyl ammonium chloride (BDMHAC) as a lipophilic cationic additive onto a gold electrode pre-coated with the conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) as an ion and electron transducer. The sensor with 14.31 % of CuMAPc-PnBA (ionophore II) exhibited a good selectivity for (HPO4)?2. The thus constructed sensor discriminated many anions, including F?, Cl?, Br?, I, CH3COO?, NO3 ?, ClO4 ?, and SO4 2?. The potentiometric response of the phosphate selective electrode was found to be independent of the pH of sample solution in the range 6–9. The sensor showed a Nernstian slope of ?29.8 ± 0.3 mV conc.?1 decade?1 with linear range of 4.0 × 10?9–1.0 × 10?2 mol L?1 and detection limit of 1.0 × 10?9 mol L?1 at pH 8.0. The proposed phosphate sensor has been utilized as a detector for the flow injection potentiometric determination of phosphate in different water samples at the nanomolar concentration range.  相似文献   

16.
Synthesis of poly(o-anisidine) doped with various protonic acids by using ammonium persulphate as oxidizing agent were carried out in aqueous acid media. Influences of protonic acids on the physicochemical properties were investigated. The various process parameters were optimized to obtain poly(o-anisidine) in the conducting salt phase form. The results are discussed with references to different protonic acids. It was observed that poly(o-anisidine) is highly soluble in organic solvents, such as m-cresol and N-methyl pyrrolidinone (NMP). The polymers were characterized by UV-Visible, FTIR, SEM, XRD and conductivity measurements. A result shows that, different types of dopant acids HCl, H2SO4 and HClO4 affect the morphology and electrical conductivity of the polymer. The electrical conductivity of the polymer follows the order HCl >H2SO4>HClO4. Thus the effect of dopant ion type and the size of its negative ions influence the physico-chemical properties. UV-Vis absorption spectra shows peaks at 740–783 nm with shoulder at 380–420 nm as characteristic peaks for the emeraldine salt (ES) phase of poly(o-anisidine) POA. The FTIR spectra show a broad and intense band at ~2800–3001 cm?1 and ~1159–1170 cm?1 that account for the formation of ES phase of the polymer. The X-ray diffraction spectra show a characteristic peak at 20–30o, 2θ range which reveals partial crystalline structure. The conductivity of the poly(o-anisidne) salt was found to be in the range of 10?3 to 10?2 S/cm. SEM studies of poly(o-anisidine) doped with HCl shows the continuous granular uniform morphology with sub-micrometer evenly distributed particles of size ~100–200 nm.  相似文献   

17.
When poly(N‐vinyl pyrrolidone‐co‐vinyl acetate) (PVP‐co‐PVAc) containing amide and ester groups were complexed with silver salts to form silver polymer electrolyte membranes, their separation performance of propylene/propane mixtures showed the high selectivity of propylene over propane of 55 and the high mixed gas permeance of 12 GPU (1 GPU = 1.0 × 10?6 cm3(STP) cm?2 s?1 cmHg?1). The separation performance strongly depends on the composition of the copolymer: the higher concentration of PVP in the copolymer, the better separation performance was achieved. These results suggest that the amide group is more effective in facilitated propylene transport than the ester group, primarily due to the stronger interaction of the silver ions with the amide than the ester oxygens, as demonstrated by FT‐IR and FT‐Raman spectroscopies. In‐situ FT‐IR spectra upon propylene sorption also demonstrate that the interaction strength of the silver ions with the ligands is arranged: amide > C?C > ester. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2263–2269, 2007  相似文献   

18.
Electrolytes with high lithium-ion conductivity, better mechanical strength and large electrochemical window are essential for the realization of high-energy density lithium batteries. Polymer electrolytes are gaining interest due to their inherent flexibility and nonflammability over conventional liquid electrolytes. In this work, lithium garnet composite polymer electrolyte membrane (GCPEM) consisting of large molecular weight (Wavg ~?5?×?106) polyethylene oxide (PEO) complexed with lithium perchlorate (LiClO4) and lithium garnet oxide Li6.28Al0.24La3Zr2O12 (Al-LLZO) is prepared by solution-casting method. Significant improvement in Li+ conductivity for Al-LLZO containing GCPEM is observed compared with the Al-LLZO free polymer membrane. Maximized room temperature (30 °C) Li+ conductivity of 4.40?×?10?4 S cm?1 and wide electrochemical window (4.5 V) is observed for PEO8/LiClO4?+?20 wt% Al-LLZO (GCPEM-20) membrane. The fabricated cell with LiCoO2 as cathode, metallic lithium as anode and GCPEM-20 as electrolyte membrane delivers an initial charge/discharge capacity of 146 mAh g?1/142 mAh g?1 at 25 °C with 0.06 C-rate.  相似文献   

19.
Electrical impedance spectroscopy was used to measure the conductivity of solid polymer electrolytes. From the impedance study, the highest ionic conductivity of solid polymer electrolytes based on carboxyl methylcellulose as polymer host and oleic acid as the doping salt, prepared by the solution casting method at room temperature, σr.t, is 2.11 × 10?5 S cm?1 for the sample containing 20 wt.% of oleic acid. Transference number measurement was performed to correlate the diffusion phenomena to the conductivity behavior of carboxyl methylcellulose-oleic acid solid polymer electrolytes. From the transference number measurement study, the conduction species carrier of the cation (+) is higher than that of the anion (?). Thus, the results proved that the samples are proton-conducting solid polymer electrolytes.  相似文献   

20.
In this research, polystyrene (PSt) nanocapsules with liquid cores were prepared by 60Co γ-ray radiation induced miniemulsion polymerization, in which N-vinyl pyrrolidone (NVP) was used as the polar monomer. The characterization of polymer was carried out by 1H NMR. It was verified that during polymerization, graft copolymerization between poly (pyrrolidone) (PVP) and PSt had taken place instead of random copolymerization. The interfacial tension between polymer and water was reduced because of the grafting reaction that had occurred, which was helpful to form nanocapsules. The influence of the ratio of St to NVP, the type and amount of the surfactant and the monomer/dodocane ratio on the particle morphology was studied by TEM. Finally, the releasing process of the synthesized nanoparticles was monitored by UV-vis measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号