首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the determination of mercury, arsenic and selenium by neutron activation analysis is described. Radiochemical separations are performed by selective distillation followed by electrolysis of mercury on gold and precipitation of arsenic and/or selenium by reduction to the elemental form. The chemical yields are 80–90% for mercury and 90–100% for arsenic and selenium. Interference tests have been carried out with reference to those elements most likely to interfere with the analysis. Detection limits for mercury, arsenic and selenium using 0.1 g of sample are 0.2 ng g–1, 2 ng g–1 and 3 ng g–1, resp. Detection limits can be improved using greater sample size and neutron flux density. Results from the analysis of several NBS standard reference materials are given.  相似文献   

2.
T Guerin  M Astruc  A Batel  M Borsier 《Talanta》1997,44(12):133
An anion exchange HPLC-ICP-MS procedure allowing the simultaneous multielemental speciation analysis of arsenic, selenium, antimony and tellurium has been developed. Four arsenic species (AsIII, AsV, monomethylarsonic acid and dimethylarsinic acid), two selenium species (SeIV and SeVI) may be determined in a single run as well as one antimony (SbV) and one tellurium species (TeVI). Alternatively Sb and/or Te may be used as internal standards for As and Se speciation studies. Optimisation of ICP-MS conditions led to satisfactory relative (0.01 (SbV) to 1.8 (SeVI) ng ml−1) and absolute detection limits (1–180 pg). Reproducibility ranged from 3.1 to 5.6% and the linearity was verified in the 0–200 ng ml−1 range.  相似文献   

3.
A sensitive, precise and automated non-chromatographic method for Sb(III) and Sb(V) analytical speciation based on a continuous tandem on-line separation device in connection with inductively coupled plasma-atomic emission (ICP-AES) detection is proposed. Two on-line successive separation steps are included into this method: a continuous liquid-liquid extraction of Sb(III) with ammonium pyrrolidine dithiocarbamate (APDC) into methylisobuthylketone (MIBK), followed by direct stibine generation from the organic phase. Both separation steps are carried out in a continuous mode and on-line with the ICP-AES detector. Optimization of experimental conditions for the tandem separation and ICP-AES detection are investigated in detail. Detection limits for Sb(III) were 3 ng.mL–1 and for Sb(V) 8 ng.mL–1. Precisions observed are in the range ± 5%. The proposed methodology has been applied to Sb(III) and Sb(V) speciation in sea-water samples.  相似文献   

4.
An online UV photolysis and UV/TiO2 photocatalysis reduction device (UV–UV/TiO2 PCRD) and an electrochemical vapor generation (ECVG) cell have been used for the first time as an interface between high-performance liquid chromatography (HPLC) and atomic fluorescence spectrometry (AFS) for selenium speciation. The newly designed ECVG cell of approximately 115 L dead volume consists of a carbon fiber cathode and a platinum loop anode; the atomic hydrogen generated on the cathode was used to reduce selenium to vapor species for AFS determination. The noise was greatly reduced compared with that obtained by use of the UV–UV/TiO2 PCRD–KBH4–acid interface. The detection limits obtained for seleno-DL-cystine (SeCys), selenite (SeIV), seleno-DL-methionine (SeMet), and selenate (SeVI) were 2.1, 2.9, 4.3, and 3.5 ng mL–1, respectively. The proposed method was successfully applied to the speciation of selenium in water-soluble extracts of garlic shoots cultured with different selenium species. The results obtained suggested that UV–UV/TiO2 PCRD–ECVG should be an effective interface between HPLC and AFS for the speciation of elements amenable to vapor generation, and is superior to methods involving KBH4.  相似文献   

5.
Performances of two atomic detectors, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Atomic Fluorescence Spectrometry (AFS) have been compared for arsenic speciation in environmental samples. Instrumental couplings, based on the use of high performance liquid chromatography (HPLC), hydride generation (HG), and the two atomic detectors were used for the speciation of arsenite, arsenate, dimethylarsinic acid and monomethylarsonic acid. Optionally, arsenobetaine was also determined using on-line ultraviolet (UV) photooxidation. The detection limits ranging from 0.1 to 0.3 mug l(-1) (as As) and the precision >10% RSD obtained with HPLC-(UV)-HG-AFS were comparable with those obtained with HPLC-(UV)-HG-ICP-MS. Both instrumental coupling were applied to the NRCC-TORT-1 and several environmental samples, such as seawater, freshwater, sediments, bivalves and bird eggs, taken from two areas with different degrees of pollution. No influence of the sample matrix was observed on the results using external calibration and standard additions methods, for both coupled techniques.  相似文献   

6.
A novel method based on photo-induced chemical vapor generation (CVG) as interface to on-line coupled Hg-cysteine ion chromatograpy (IC) with atomic fluorescence spectrometry (AFS) was developed for rapid determination of methylmercury (MHg) in seafood. Separation of inorganic mercury (Hg2+) and methylmercury(CH3Hg+) was accomplished on a Hamilton PRP X-200 polymer-based exchange column with a mobile of 3% acetonitrile, 1% (w/w) L-cysteine and 20 mmol L− 1 pyridine and 160 mmol L− 1 formic acid, at pH 2.4 within 7 min. Once separated, both species are reduced by formic acid in mobile phase under UV radiation to convert Hg0 on-line, which is subsequently swept (by argon carrier gas) into an atomic fluorescence spectrometry (AFS) for measurement. Under the optimized experiment conditions, the detection limits (as Hg), based on three times the standard deviation of a standard solution, were found to be 0.1 ng mL− 1 for mercury and 0.08 ng mL− 1 for methylmercury, with an injection volume of 100 μL. The developed method was validated by determination of certified reference material DORM-2 and was further applied in determination of seafood samples.  相似文献   

7.
Concentrated perchloric acid is used to digest coal for subsequent determination of arsenic and selenium by hydride-generation atomic absorption and fluorescence spectrometry. Arsenic and selenium are removed from potentially interfering metal ions by coprecipitation with lanthanum hydroxide. The detection limits, 58 and 36 ng g?1 by atomic absorption and 25 and 10 ng g?1 by atomic fluorescence, for arsenic and selenium in coal, respectively, are adequate for the normal levels of these metals.  相似文献   

8.
The sensitivity of on-line vapor generation atomic absorption spectrometry of mercury and selenium was improved by using a new atom trap technology. The inner wall of a T-shaped quartz tube was coated with nanometer SiO2 so increase the residence time of the analyte atoms in the light path. The linear range of the calibration plots thus was increased to a range from 5.0 to 150 ng mL?1 for mercury, and from 4.5 to 100 ng mL?1 for selenium. The detection limits are 0.9 ng mL?1 for Hg and 1.0 ng mL?1 for Se which is a 2-fold improvement. The technique was applied to the determination of Hg and Se in herbs and hair.  相似文献   

9.
The application of ion-pair reversed phase chromatography (HPLC) and inductively coupled plasma mass spectrometry to the determination of six species of arsenic is described: arsenious acid (AsIII), arsenic acid (AsV), monomethylarsinic acid (MMA), dimethylarsinic acid (DMA), arsenocholine (AsC) and arsenobetaine (AsB) in marine biota and in natural fresh water. The coupling conditions of HPLC-ICP-MS are given and also the evaluation of the extraction procedure applied to determine these species in marine organisms. The limits of detection are between 6 and 25 g.l–1.  相似文献   

10.
A sorption–atomic absorption technique with dynamic preconcentration on DETATA adsorbents in a microcolumn crucible followed by the direct atomization of a solid matrix (concentrate + suspended matter) was used to determine the total dissolved and suspended Cd, Pb, and Tl (Eldis+ Elsusp) in natural waters. The detection limits were 1–3 ng/L for Cd and 5–30 ng/L for Pb and Tl. The results of the sorption–filtration atomic absorption determination of the total dissolved and suspended elements can provide extra information for the speciation analysis of waters.  相似文献   

11.
A sensitive and specific method was developed for the determination of sophoridine (SRI), sophocarpine (SC) and matrine (MT) in rabbit plasma by HPLC-MS. After an administration of Kuhuang by injection, blood samples were collected and extracted with methanol. The extract solutions were analysed by HPLC-MS method. The separation was performed on a ZORBAX Extend-C18 column using methanol/water/diethylamine (50:50:0.07, v/v/v) as mobile phase. The quinolizidine alkaloids were detected by using mass spectrometry in the SIM mode. There was a good linear relationship between peak area and concentration of analytes over the concentration range of 13.2–995.0 ng mL–1 for SRI, 7.0–530.0 ng mL–1 for SC and 8.8–655.0 ng mL–1 for MT, respectively. The absolute recovery of this method was more than 57% for SRI, 87% for SC and 91% for MT. The accuracy of assay was more than 90%. The limits of detection (LODs) were 6.8 ng mL–1 for SRI, 3.5 ng mL–1 for SC and 4.2 ng mL–1 for MT, respectively. The limits of quantitation (LOQs) were 13.2 ng mL–1 for SRI, 7.0 ng mL–1 for SC and 8.8 ng mL–1 for MT, respectively. The intra-day and inter-day coefficients of variation (RSDs) were less than 10.1, 6.3 and 5.8% for SRI, SC and MT, respectively. The developed method was applied to determine the concentration–time profiles of SRI, SC and MT in rabbit plasma after injection of Kuhuang.  相似文献   

12.
This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg0, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL1 for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury (n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92–98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).  相似文献   

13.
A catalytic kinetic method (CKM) is presented for the determination of mercury(II) based on its catalytic effect on the rate of substitution of N-methylpyrazinium ion (Mpz+) onto hexacyanoferrate(II). The progress of the reaction was monitored spectrophotometrically at 655 nm by registering the increase in absorbance of the product [Fe(CN)5(Mpz]2− under the reaction conditions: 5 × 10−3 mol L−1 [Fe(CN)6]4−), 5 × 10−5 mol L−1 [Mpz+], T = 25.0 ± 0.1°C, pH 5.00 ± 0.02 and ionic strength, I = 0.1 mol L−1 (KNO3). Quantitative rate data at specified experimental conditions showed a linear dependence of the absorbance after fixed time A t on the concentration of mercury(II) catalyst in the range 20.06–702.1 ng mL−1. The maximum relative standard deviations and percentage errors for the determination of mercury(II) in the range of 20.06–200.6 ng mL−1 were calculated to be 1.7 and 2.7% respectively. The detection limit was found to be 7.2 ng mL−1 of mercury(II). Accuracy (expressed in terms of recoveries) was in the range of 98–103%. Figures of merit and interference due to many cations and anions was investigated and discussed. The applicability of the method was demonstrated by determining the mercury(II) in different synthetic samples and confirming the results using atomic absorption spectrophotometry. The proposed method allowed determination of mercury(II) in the range 20.06–702.1 ng mL−1 with very good selectivity and an output of 30 samples h−1.__________From Zhurnal Analiticheskoi Khimii, Vol. 60, No. 6, 2005, pp. 654–661.Original English Text Copyright © 2005 by Surendra Prasad.This article was submitted by the author in English.  相似文献   

14.
Despite the importance of accurately determining inorganic arsenic speciation in natural waters to predicting bioavailability and environmental and health impacts, there remains considerable debate about the most appropriate species preservation strategies to adopt. In particular, the high-iron, low-Eh (redox potential) shallow groundwaters in West Bengal, Bangladesh and SE Asia, the use of which for drinking and irrigation purposes has led to massive international concerns for human health, are particularly prone to changes in arsenic speciation after sampling. The effectiveness of HCl and EDTA preservation strategies has been compared and used on variably arsenic-rich West Bengali groundwater samples, analysed by ion chromatography–inductively coupled plasma–mass spectrometry (IC–ICP–MS). Immediate filtration and acidification with HCl followed by refrigerated storage was found to be the most effective strategy for minimizing the oxidation of inorganic As(III) during storage. The use of a PRP-X100 (Hamilton) column with a 20 mmol L–1 NH4H2PO4 as mobile phase enabled the separation of Cl from As(III), monomethylarsonic acid, dimethylarsinic acid and As(V), thereby eliminating any isobaric interference between 40Ar35Cl+ and 75As+. The use of EDTA as a preservative, whose action is impaired by the high calcium concentrations typical of these types of groundwater, resulted in marked oxidation during storage. The use of HCl is therefore indicated for analytical methods in which chloride-rich matrices are not problematical. The groundwaters analysed by IC–ICP–MS were found to contain between 5 and 770 ng As mL–1 exclusively as inorganic arsenic species. As(III)/total-As varied between 0 and 0.94.  相似文献   

15.
The potential of coupling anion-exchange high-performance liquid chromatography, hydride generation and atomic fluorescence spectrometry (HPLC–HG–AFS) for arsenic speciation is considered. The effects of hydrochloric acid and sodium tetrahydroborate concentrations on signal-to-background ratio, as well as argon and hydrogen flow rates, were investigated. Detection limits for arsenite, dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and arsenate were 0.17, 0.45, 0.30 and 0.38 μg l−1, respectively, using a 20-μl loop. Linearity ranges were 0.1–500 ng for As(III) and MMA (as arsenic), and 0.1–800 ng for DMA and As(V) (as arsenic). Arsenobetaine (AsB) was also determined by introducing an on-line photo-oxidation step after the chromatographic separation. In this case the limits of detection and linear ranges for the different species studied were similar to the values obtained previously for As(V). The technique was tested with a human urine reference material and a volunteer's sample. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
Summary Phencyclidine (PCP) was found to be extractable by headspace solid-phase microextraction (SPME) from human whole blood and urine. Sample solutions were heated at 90°C in the presence of NaOH and K2CO3, and an SPME fiber was exposed in the headspace of a vial for 30 min. Immediately after withdrawal of the fiber, it was analyzed by gas chromatography with surface ionization detection (GC-SID). Recoveries of PCP were approximately 9.3–10.8% and 39.8–47.8% for whole blood and urine samples, respectively. The calibration curve for PCP showed good linearity in the range 2.5–100 ng mL–1 whole blood and 0.5–100 ng mL–1 urine. The detection limits were approximately 1.0 ng mL–1 for whole blood and 0.25 ng mL–1 for urine.  相似文献   

17.
An arsenic chemical speciation study was performed in 2000, using air filters on which total suspended particles (TSP) were collected, from the city of Huelva, a medium size city with huge industrial influence in SW Spain. Different procedures for extraction of the arsenic species were performed using water, NH2OH.HCl, and H3PO4 solutions, with either microwave or ultrasonic radiation. The best optimised extraction methods were use of 100 mmol L–1 NH2OH.HCl and 10 mmol L–1 H3PO4 and microwave radiation for 4 min. High-performance liquid chromatography coupled with hydride generation and atomic fluorescence spectrometry (HPLC–HG–AFS) was employed for determination of the arsenic species. The results from 12 TSP air filters collected on a monthly basis showed extraction was quantitative (94% with NH2OH.HCl and 86% H3PO4). Only inorganic arsenic species (arsenite and arsenate) were detected. The mean arsenite concentration was 1.2±0.3 ng m–3 (minimum 0.3 ng m–3, maximum 1.8 ng m–3). The mean arsenate concentration was 10.4±1.8 ng m–3, with greater monthly variations than arsenite (minimum 2.1 ng m–3, maximum 30.6 ng m–3). The high level of arsenic species in the TSP samples can be related to a copper smelter located in the region.  相似文献   

18.
An alternative and practical method is described for simultaneous detection and quantification of the potent hallucinogen lysergic acid diethylamide (LSD) and related compounds in urine and serum samples. The procedure is based on liquid–liquid re-extraction with ethyl acetate and reversed-phase liquid chromatography coupled with fluorescence detection (HPLC–FLD). With detection limits in urine and serum samples of ca 0.07 ng mL–1 for LSD, nor-LSD, and iso-LSD, respectively, the method is well suited to forensic investigations. Application of the method to clinical samples and autopsy material enable selective identification and accurate quantification of LSD and related compounds. Comparison of results with those obtained from an LSD immunoassay (EMIT II) emphasize the need for chromatographic confirmation.Revised: 1 December 2003 and 9 February 2004  相似文献   

19.
Water soluble tertiary amines enhance signals and decrease polyatomic chloride interferences in the direct inductively coupled plasma – mass spectrometric (ICP-MS) determination of As and Se in biological samples. Preliminary experiments with amine concentrations and nebulizer flow rates produced element and interference signal intensity changes. Arsenic and Se ICP-MS determination parameters have been optimized by a simplex procedure with amines in an argon plasma or without amines but with addition of N2 to the Ar. Variables include RF (radio frequency) power, nebulizer gas flow rate, intermediate gas flow rate, and amine concentration or nitrogen gas flow rate. Detection limit, minimization of polyatomic ion intensities, and reproducibility have been evaluated as reponse factors. The signal enhancement and element-to-molecular interference ratios differ to some extent with analyte intensity optimum operating conditions. The detection limits with addition of nitrogen (16 pg mL–1 for As and 180 pg mL–1 for Se) or of amines (8 pg mL–1 for As and 120 pg mL–1 for Se) and the extent of chloride interference minimization were compared. Amines addition was more beneficial. Biological standard reference materials and food and fecal samples were analyzed following different sample dissolution procedures.  相似文献   

20.
Arsenic trioxide (As2O3) has been widely accepted as the second-best choice for the treatment of relapsed and refractory acute promyelocytic leukemia (APL) patients. However, a few studies have been conducted on a detailed speciation of As2O3 metabolites in blood samples of patients. To clarify the speciation of arsenic, the blood samples were collected at various time points from a patient with APL after remission induction therapy and during consolidation therapy. The total amounts of arsenic in blood cells and plasma, and the plasma concentrations of inorganic arsenic and methylated metabolites were determined by inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography/ICP-MS, respectively. The total amounts of arsenic in the blood cells were 4–10 times higher than those in plasma. Among all arsenic metabolites, the pentavalent arsenate (AsV) in plasma was more readily eliminated. During the drug-withdrawal period, the initial plasma concentrations of trivalent arsenic (AsIII) declined more rapidly than those of methylarsonic acid and dimethlyarsinic acid, which are known as the major methylated metabolites of AsIII. On the other hand, during the consecutive administration in the consolidation therapy period, the plasma concentrations of total arsenic and arsenic metabolites increased with time. In conclusion, these results may support the idea that methylated metabolites of As2O3 contribute to the efficacy of arsenic in APL patients. These results also suggest that detailed studies on the pharmacokinetics as well as the pharmacodynamics of As2O3 in the blood cells from APL patients should be carried out to provide an effective treatment protocol. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Presented at the 4th International Conference on Trace Element Speciation in Biomedical, Nutritional and Environmental Sciences, 25–29 May 2008, Munich-Neuherberg, Germany.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号