首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 combined laser-doppler and cold wire anemometry technique for determining turbulent heat flux is described. The system can be used in flows of arbitrarily high turbulent intensity and large temperature variations. Its potential is demonstrated via measurements in a simulated stable atmospheric boundary layer, for which the Monin-Obukhov length scale was about 70% of the boundary layer depth. Mean and turbulence properties were obtained throughout the boundary layer and the results are shown to be both internally consistent and similar to corresponding field data. Measurements in the highly turbulent, separated flow behind a bluff body mounted in the stable boundary layer are also presented. Received: 9 May 1997 / Accepted: 2 September 1997  相似文献   

2.
New method of obtaining dissipation   总被引:1,自引:0,他引:1  
To understand turbulence from a physical as well as a practical point of view it is imperative to know how the turbulent energy is created, transported and finally dissipated. The above physical processes are described by the turbulent kinetic energy equation. Two terms, namely the pressure diffusion and the dissipation, cannot yet be measured in a strict sense. The former has not been successfully measured by any means but the latter can be measured by invoking local isotropy for most of the fine scales of dissipating eddies.This research deals with the study of dissipation from an experimental point of view. Different experimental results have been reviewed and compared. First of all, methods are tested and compared in two well-known flows, boundary layer and fully developed pipe flow. A new method of obtaining dissipation that has proven to be most successful is the one where the dissipations calculated from the integration of the spectra from different lengths of the hot wire are extrapolated to zero length. High intensity of turbulence up to 60% is present in a large portion of the wall layer of a diffuser. The correction for dissipation due to high intensity of turbulence, introduced by Lumley (1965) and followed by Champagne (1978) in specific form, has been adopted to correct the dissipation in diffuser flow. The corrected dissipation compares quite well with the dissipation obtained from the kinetic energy equation as a closing term.  相似文献   

3.
In the present study, an axisymmetric turbulent boundary layer growing on a cylinder is investigated experimentally using hot wire anemometry. The combined effects of transverse curvature as well as low Reynolds number on the mean and turbulent flow quantities are studied. The measurements include the mean velocity, turbulence intensity, skewness and flatness factors in addition to wall shear stress. The results are presented separately for the near wall region and the outer region using dimensionless parameters suitable for each case. They are also compared with the results available in the open literature.The present investigation revealed that the mean velocity in near wall region is similar to other simple turbulent flows (flat plate boundary layer, pipe and channel flows); but it differs in the logarithmic and outer regions. Further, for dimensionless moments of higher orders, such as skewness and flatness factors, the main effects of the low Reynolds number and the transverse curvature are present in the near wall region as well as the outer region.  相似文献   

4.
The marker‐density‐function (MDF) method has been developed to conduct direct numerical simulation (DNS) for bubbly flows. The method is applied to turbulent bubbly channel flows to elucidate the interaction between bubbles and wall turbulence. The simulation is designed to clarify the structure of the turbulent boundary layer containing microbubbles and the mechanism of frictional drag reduction. It is deduced from the numerical tests that the interaction between bubbles and wall turbulence depends on the Weber and Froude numbers. The reduction of the frictional resistance on the wall is attained and its mechanism is explained from the modulation of the three‐dimensional structure of the turbulent flow. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Owing to the high beam power densities envisaged in advanced nuclear targets, liquid metal-operated free surface targets are conceived as one feasible option. There, the free surface is formed by an adequately shaped upstream located nozzle. Target boundary conditions necessitate a detailed knowledge on the turbulent flow in contraction nozzles in order to identify turbulence models accurately predicting experimental findings within the velocity range of interest for nuclear target and hence can then act as design optimisation tools. In this context, a combined experimental and numerical study is conducted on the basis of the turbulent flow in the contraction nozzle of the Super-FRS target. Two aspects determining the turbulent flow in the nozzle have been investigated. The first is a potential relaminarisation of the boundary layer caused by the acceleration within the contraction and the second is a development of the secondary flows due to the pressure gradient in the rectangular shaped ducts cross-section. Regarding the three different turbulence models investigated here only the V2F model exhibited the capability to predict the relaminarisation of the turbulent boundary layer both qualitatively and quantitatively. All turbulence models are able to predict the development of secondary flows induced by pressure gradients in transverse direction with an acceptable accuracy.  相似文献   

6.
Predictions for two-dimensional, steady, incompressible flows under both laminar and turbulent conditions are presented. The standard k-? turbulence model is used for the turbulent flows. The computational method is based on the approximate factorization technique. The coupled approach is used to link the equations of motion and the turbulence model equations. Mass conservation is enforced by either the pseudocompressibility method or the pressure correction method. Comparison of the two methods shows a superiority of the pressure correction method. Second- and fourth-order artifical dissipation terms are used in order to achieve good convergence and to handle the turbulence model equations efficiently. Several internal and external test cases are investigated, including attached and separated flows.  相似文献   

7.
A passive grid-generated turbulence technique for generating turbulent inflow conditions in large-eddy simulation (LES) is developed on moderate number of mesh cells and the results are compared with synthetic methods and wind tunnel experiments performed at Reynolds (Re) number of order 100 (based on Taylor microscale). Consistent with previous investigations, it is found that the synthetic methods turbulence dissipate the turbulence kinetic energy very quickly while the present technique represents this decay more accurately. However, this pre-computation method usually requires considerable computational cost. The aim of this study is, therefore, to decrease the computational cost by employing a relatively coarse mesh resolution accompanied with an appropriate wall modelling approach in the solid boundary. The results are within an acceptable accuracy and, therefore, offer a cost-effective solution to generate inflow turbulence parameters for their use in different aerodynamic applications at low Re numbers.  相似文献   

8.
A relatively simple, yet efficient and accurate finite difference method is developed for the solution of the unsteady boundary layer equations for both laminar and turbulent flows. The numerical procedure is subjected to rigorous validation tests in the laminar case, comparing its predictions with exact analytical solutions, asymptotic solutions, and/or experimental results. Calculations of periodic laminar boundary layers are performed from low to very high oscillation frequencies, for small and large amplitudes, for zero as well as adverse time-mean pressure gradients, and even in the presence of significant flow reversal. The numerical method is then applied to predict a relatively simple experimental periodic turbulent boundary layer, using two well-known quasi-steady closure models. The predictions are shown to be in good agreement with the measurements, thereby demonstrating the suitability of the present numerical scheme for handling periodic turbulent boundary layers. The method is thus a useful tool for the further development of turbulence models for more complex unsteady flows.  相似文献   

9.
柔性壁面湍流边界层相干结构控制的实验研究   总被引:3,自引:0,他引:3  
本文利用热膜测速技术对刚性壁面和柔性壁面湍流边界层的流向速度分量进行了实验测量,首先研究了柔性壁面对平均速度分布和湍流度分布的影响,结果表明:柔性壁面的边界层速度分布在对数律层向上有所平移,缓冲层加厚,具有一般的壁面减阻特征;而柔性壁的湍流度比刚性壁的湍流度要低,分布也更为平坦。然后综合运用自相关法和条件采样技术研究了湍流近壁区的相干结构,结果表明:刚性壁自相关曲线的第二峰值出现的时间比柔性壁的短,柔性壁的猝发频率比刚性壁的低许多。实验结果表明柔性壁面具有一定的减阻作用。  相似文献   

10.
The use of finite element methods for turbulent boundary-layer flow is relatively recent and of limited extent.1 In the present study, we extend the group variable approach of Fletcher and Fleer2,3 to treat turbulent boundary layer flows with heat transfer using a two-equation turbulence model. The main concepts in the formulations include a Dorodnitsyn-type transformation which uses a velocity component as the transverse variable, a ‘variational’ formulation for the transformed equations using special test functions and development of a two-equation turbulence model in terms of the turbulent kinetic energy and turbulence dissipation rate as additional field variables. Several numerical test cases have been examined comparing the results with finite difference calculations and comparing the two-equation turbulence model with an algebraic turbulence model.  相似文献   

11.
ABSTRACT

In this work, we examine the flux correction method for three-dimensional transonic turbulent flows on strand grids. Building upon previous work, we treat flux derivatives along strands with high-order summation-by-parts operators and penalty-based boundary conditions. A finite-volume like limiting strategy is implemented in the flux correction algorithm in order to sharply capture shocks. To achieve turbulence closure in the Reynolds-Averaged Navier–Stokes equations, a robust version of the Spalart–Allmaras turbulence model is employed that accommodates negative values of the turbulence working variable. Validation studies are considered which demonstrate the flux correction method achieves a high degree of accuracy for turbulent shock interaction flows.  相似文献   

12.
Using a numerical weather forecasting code to provide the dynamic large-scale inlet boundary conditions for the computation of small-scale urban canopy flows requires a continuous specification of appropriate inlet turbulence. For such computations to be practical, a very efficient method of generating such turbulence is needed. Correlation functions of typical turbulent shear flows have forms not too dissimilar to decaying exponentials. A digital-filter-based generation of turbulent inflow conditions exploiting this fact is presented as a suitable technique for large eddy simulations computation of spatially developing flows. The artificially generated turbulent inflows satisfy the prescribed integral length scales and Reynolds-stress-tensor. The method is much more efficient than, for example, Klein’s (J Comp Phys 186:652–665, 2003) or Kempf et al.’s (Flow Turbulence Combust, 74:67–84, 2005) methods because at every time step only one set of two-dimensional (rather than three-dimensional) random data is filtered to generate a set of two-dimensional data with the appropriate spatial correlations. These data are correlated with the data from the previous time step by using an exponential function based on two weight factors. The method is validated by simulating plane channel flows with smooth walls and flows over arrays of staggered cubes (a generic urban-type flow). Mean velocities, the Reynolds-stress-tensor and spectra are all shown to be comparable with those obtained using classical inlet-outlet periodic boundary conditions. Confidence has been gained in using this method to couple weather scale flows and street scale computations.  相似文献   

13.
 Some novel, non-intrusive, high-frequency, localized optical measurements of turbulence in compressible flows are described. The technique is based upon focusing schlieren optics coupled with high-speed quantitative measurement of light intensity fluctuations in the schlieren image. Measurements of density gradient fluctuations confined to a thin slice of the flowfield are thus obtained. The new instrument was used to investigate the structure of a two-dimensional, adiabatic, wind tunnel wall boundary layer at a Mach number of 3. The measurements were compared to data obtained using hot-wire anemometry and good agreement was found between the two. Distributions of broadband convection velocity of large-scale structures through the boundary later were also measured. In marked contrast to earlier results, it is shown here that the convection velocity is essentially identical to the local mean velocity. Further, results obtained using the VITA conditional sampling technique shed new light on the turbulent boundary layer structure. Overall, the data presented herein serve to validate the new measurement technique. Received: 12 February 1997/Accepted: 31 January 1998  相似文献   

14.
In [1, 2] turbulence of the external flow was taken into account by specifying the turbulent energy at the external boundary of the boundary layer on integrating the energy-balance equation for the turbulence. In [3] a special correction that allowed the turbulence of the external flow to be taken into account was introduced in determining the mixture path. In [4, 5] the turbulent energy calculated from the energy-balance equation of the turbulence was added to the energy induced by turbulence of the external flow, the energy distribution of the induced turbulence being specified using an empirically selected function. In [6, 7] a method of taking into account the effect of turbulence of the external flow on a layer of mixing and a jet was proposed. In the present work, this method is applied to the boundary layer at a plate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 26–31, May–June, 1977.  相似文献   

15.
Reynolds-averaged Navier–Stokes prediction of shock wave/turbulent boundary layer interactions can yield significant error in terms of the size of the separation bubble. In many applications, this can alter the shock structure and the resulting surface properties. Shock-unsteadiness modification of Sinha et al. (Physics of Fluids, Vol.15, No.8, 2003) has shown potential in improving separation bubble prediction in compression corner flows. In this article, the modification is applied to oblique shock wave interacting with a turbulent boundary layer. The challenges involved in the implementation of the shock-unsteadiness correction in the presence of multiple shock waves and expansion fans are addressed in detail. The results show that a robust implementation of the model yields appreciable improvement over standard kω turbulence model predictions.  相似文献   

16.
17.
The purpose of this paper is to show that the measurement of turbulent spectrum using wholefield velocity techniques such as particle image velocimetry (PIV) is possible. Toward this end, data from the axial plane of a self-similar turbulent axisymmetric jet, at a Reynolds number, based on Taylor microscale of 30 has been analyzed. The two-dimensional velocity data are first high-pass filtered, which educes the vortices. An automated method is then used to identify the vortices and measure their properties. By directly measuring the energy of the vortices, it is possible to plot the turbulence spectrum. The spectrum presented here shows the presence of energy containing and inertial regimes. However, the smallest scales have not been resolved in the measurements. The slope of the spectrum in the inertial subrange is about −1.6. The number of vortices in the two regimes have also been measured. The number of vortices in the energy containing regime is substantially smaller than those in the inertial subrange. The technique has been verified by analyzing another dataset. These results show that the direct measurement of vortex properties with reasonable confidence is possible using PIV and an appropriate vortex eduction technique.  相似文献   

18.
网格湍流微结构的实验研究   总被引:3,自引:0,他引:3  
本文试验研究了网格湍流从前期到后期整个连续衰变过程即湍能和Taylor微尺度随时间的变化规律,以及高阶速度相关系数的变化规律,试验结果是在一个低湍流度、低速风洞内,用TSI热线风速仪测得的,而拟均匀各向同性湍流是用在风洞试验段入口处加网格产生的,本文的试验结果与文献[1]提出的涡旋结构理论的计算结果做了比较,发现理论计算的和曲线与本文实测值非常吻合,本文的实测结果与Townsendt早年的试验以及Beanett七十年代末的试验也做了比较。结果表明,这些试验结果彼此也很一致,因而,所有这些试验结果与理论计算值都相互获得了验证。  相似文献   

19.
A Lagrangian continuous random walk (CRW) model is developed to predict turbulent particle dispersion in arbitrary wall-bounded flows with prevailing anisotropic, inhomogeneous turbulence. The particle tracking model uses 3D mean flow data obtained from the Fluent CFD code, as well as Eulerian statistics of instantaneous quantities computed from DNS databases. The turbulent fluid velocities at the current time step are related to those of the previous time step through a Markov chain based on the normalized Langevin equation which takes into account turbulence inhomogeneities. The model includes a drift velocity correction that considerably reduces unphysical features common in random walk models. It is shown that the model satisfies the well-mixed criterion such that tracer particles retain approximately uniform concentrations when introduced uniformly in the domain, while their deposition velocity is vanishingly small, as it should be. To handle arbitrary geometries, it is assumed that the velocity rms values in the boundary layer can locally be approximated by the DNS data of fully developed channel flows. Benchmarks of the model are performed against particle deposition data in turbulent pipe flows, 90° bends, as well as more complex 3D flows inside a mouth-throat geometry. Good agreement with the data is obtained across the range of particle inertia.  相似文献   

20.
Accurate estimation of thermal-hydraulic characteristics of supercritical flows has long been an attractive but elusive subject to many researchers in spite of tremendous effort devoted to the development of suitable turbulence models. One of the key reasons for the difficulty is a lack of measured turbulence data, which might have been used to formulate adequate turbulence models suitable for highly buoyant fluids. Turbulence models are typically based on the log-law, while the velocity profile in buoyant fluids substantially deviates from the log-law because of significant density variation in a turbulent boundary layer. In this paper, axisymmetric compressible Reynolds-Averaged governing equations were employed together with the property-dependent turbulent Prandtl number to reproduce experimental data representing heat transfer deterioration and consequential sudden temperature increase. The additional turbulence terms associated with turbulent mass flux appeared in the governing equations were modeled using the simple gradient diffusion hypothesis (SGDH). The proposed model successfully reproduced the experimental data. The various turbulence properties are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号