首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Abstract— Previous studies (Biolo et al., Photochem. Photobiol. 59, 362-365, 1994) showed that liposome-delivered Si(IV)-na-phthalocyanine (SiNc) photosensitizes B16 pigmented melanoma subcutaneously transplanted in C57 mice to the action of 776 nm light. However, the efficacy of the phototreatment was limited by a lack of selectivity of tumor targeting by SiNc as well as by incomplete necrosis of the neoplastic mass. The present investigations show that the use of a different delivery system (Cremophor emulsion vs liposomes of dipalmitoylphosphatidylcholine) causes no significant increase in the selectivity of tumor targeting for three injected doses of SiNc (0.5, 1, 2 mg/kg). However, upon 776 nm light irradiation (300 mW/cm2; 520 J/cm2), the delay in the rate of tumor growth was maximal (7-8 days) for the highest naphthalocyanine dose. On the other hand, a remarkable improvement in the tumor response was obtained by inducing an intratumoral temperature increase to 44°C immediately after PDT. The thermal effect appeared to be due to photoexcitation of melanin by 776 nm light (550 mW/cm2; 520 J/cm2) and subsequent partial conversion of absorbed energy into heat.  相似文献   

2.
Abstract— The clinical perfusion agent 99mTc-MIBI was used to monitor changes in tumor vascular perfusion (TVP) induced by Photofrin® (Pll)-mediated photodynamic therapy (PDT). BALB/c mice bearing an EMT-6 tumor on each hind thigh were given an intravenous injection of 1, 2 or 5 mg kg−1 PII. Twenty-four hours later, one tumor was illuminated (600–650 run, 200 mW cm−2 400 J cm−2) while the other served as a control. At various time intervals after PDT (0, 2 and 24 h) mice received an intravenous injection of 99mTc-hexakismethoxy(sobutyusonitri-le (MIBI) (0.18 MBq g−1) and were sacrificed 2 min later. The light-treated and the untreated tumors were then dissected, the radioactivity was counted and the percentage of the injected dose per gram of tumor (%ID g−1) was calculated as a measure of TVP. We observed that TVP is drug dose dependent, develops progressively with time post-PDT and is inversely related to PDT efficacy. Our data show that early tumor retention of 99mMIBI is a simple method to assess TVP and vascular damage induced by PDT.  相似文献   

3.
The aggregation of phytochrome purified from etiolated pea ( Pisum satirum cv. Alaska) and rye ( Secale cereale cv. Cougar) tissues was investigated by centrifugation and turbidimetry. Purified pea phytochrome (A669/A280= 0.88), if irradiated with red light, became precipitable in the presence of CaCl2. The precipitation upon red-light irradiation was optimal at a Ca2- or Mg2+ concentration of 10–20 m M , was greater at increased phytochrome concentration or lower pH values, and was inhibited by 0.1 M KG. The precipitated phytochrome slowly became soluble after far-red light exposure.
Turbidity of pea phytochrome solutions after red-light irradiation also increased rapidly in the presence of either Ca2+ or Mg2+. Far-red light exposure after the red light cancelled the turbidity increase. Rye phytochrome showed less turbidity increase than pea phytochrome and occurred only in the presence of Ca2+. Partially degraded pea phytochrome produced by endogenous proteases in the extract did not show the turbidity increase. Undegraded pea phytochrome also associated with microsomal fractions under conditions similar to those described above, but the partially degraded phytochrome did not.  相似文献   

4.
Abstract Studies directed at determining the biochemical events that lead to tumor cytotoxicity following photodynamic therapy, a promising new approach for treatment of neoplasia, have demonstrated that exposure of R3230AC mammary tumors to hematoporphyrin derivative or Photofrin II plus visible light caused marked impairment of mitochondrial enzymes functioning in oxidative phosphorylation and electron transport. 31P-NMR spectroscopy has now demonstrated that a rapid and striking decrease in NTP (ATP) levels, concomitant with a marked increase in P;, occurs in tumors shortly after photodynamic therapy. These effects appear to be fluence related. Possible changes in tumor vascularity, as detected by 2H-NMR measurements of the uptake of D20, were not observed under the conditions studied. Taken together with our earlier results, we conclude that the reduction in tumor ATP levels in situ , probably via inhibition of mitochondrial function, is a direct and early response of neoplastic tissue to porphyrin-induced photosensitization.  相似文献   

5.
THE PHOTODYNAMIC EFFECT OF HEMATOPORPHYRIN ON DNA   总被引:1,自引:0,他引:1  
Abstract— Breakage of DNA in vitro and inside E. colt cells has been determined after exposure to monochromatic 365 nm light in the presence of 10 µM hematoporphyrin. When measured by alkaline sucrose sedimentation, the yields of breaks were 1.4 × 10-12 per dalton and per J/m2 for Col El-DNA in vitro and 5.9 × 10-3 per dalton and per J/m2 for superinfecting phage Λ DNA inside E. coli cells made permeable by toluene. No breaks were found by neutral sucrose sedimentation, demonstrating that the lesions represent alkali-labile bonds. The majority of the alkali-labile bonds were induced by singlet oxygen, as evidenced by the several-fold higher yield obtained in D2O-containing buffer.  相似文献   

6.
Abstract Porphyrin binding to serum albumin was studied at the molecular level probing the effects of: porphyrin self-aggregation, porphyrin species, temperature and protein-bound fatty acids. Human serum albumin was found to have a single high-affinity site for porphyrin monomers, with binding constants of 2 x 106, 5 x 107 and 3 x 108 (37o C, neutral pH, M −1), for hemato-, deutero- and protoporphyrins, respectively. Three equilibria models for the dimer binding were developed and tested. The data were found to fit best with a model proposing a single high-affinity binding site for the dimer, independent of and different than the monomer site. The binding constants of the hematoporphyrin and deuteroporphyrin dimers to human serum albumin (37o C, neutral pH, M−l) being 4 x 10* and 5 x 108 respectively. The temperature dependence (Dp and HSA, 22-37o C) of the monomer binding showed the process to be entropy-driven (δGo= -45 kJ mol−1; δSo=+146 kJ mol−1; δHo= 0 kJ mol−1). For the dimer binding, the enthalpy change was found to be highly temperature-dependent implying continuous changes in the heat capacity of the system over the entire temperature range, the trend at the 37o C region fitting an entropy-driven process. The monomer vs dimer differences in temperature dependence strongly support separate and independent binding sites for these species. Similar thermodynamics were determined for fatty-acid carrying as well as for fatty-acid free HSA, with mild quantitative (but not qualitative) shifts.  相似文献   

7.
Abstract— Photooxidation, whether initiated by an endogenous or exogenous sensitizer, is an important mechanism in light induced damage to the lens. One of the substrates for this damage is lens protein. A porphyrin sensitizer which binds to lens proteins [ mesotetra ( p -sulfonatophenyl) porphyrin (TPPS)] was found to photooxidize Skh-2 pigmented mice lens protein in vivo. Uroporphyrin, a model for a non-binding photosensitizer, did not induce photooxidative damage to the mouse lens.
The radioprotector 3-amino-2-hydroxypropyl phosphorothioate (WR-77913) was investigated as an agent to retard or negate in vivo photooxidative damage to the lens. Intraperitoneal injections of WR-77913 prior to irradiation reduced the TPPS induced photodestruction of lens protein in Skh-2 pigmented mice.
The mechanism of protection was also investigated. Thiols were found to quench both the triplet state of porphyrins and the reactive intermediate singlet oxygen on the order of 105 and 106 M -1 s1 respectively. These are probably not fast enough to explain most of the protection afforded by thiols. An additional mechanism may be the accelerated photobleaching of porphyrins by thiols which protects tissue by reducing the absorptions due to the porphyrins.  相似文献   

8.
Abstract Balb/c mice bearing a transplanted MS-2 fibrosarcoma were injected with 2.5 mg kg 1 of either tetra(4-sulfonatophenyl/porphine (TPPS) in phosphate-buffered saline or 0.5 mg kg−1 of Zn2+-phthalocyanine (Zn-Pc) incorporated into unilamellar liposomes of dipalmitoyl-phosphatidylcholine. Chromatographic studies showed that TPPS is mainly transported in the serum by globulins and albumin, while Zn-Pc is specifically bound by lipoproteins. Exposure of the injected mice to red light (300 J cm−2) caused extensive tumor necrosis. The ultrastructural analysis of tumor specimens taken from mice at 15 h after PDT showed that TPPS photoinduces a preferential necrosis of the neoplastic cells, while Zn-Pc causes severe photodamage to both the vascular system and the neoplastic cells. The different modes of tumor photosensitization by TPPS and Zn-Pc are discussed on the basis of the transport mechanism of the two dyes.  相似文献   

9.
Malignant melanoma of the choroid is the most common primary intraocular tumor in adult humans. Controversy exists over which is the most effective therapy. One therapeutic modality that has not been thoroughly investigated is hematoporphyrin derivative phototherapy (HPdPRT), a technique used successfully in the clinic on many non-ocular tumors.
The effect of HPd PRT on an ocular, amelanotic melanoma was evaluated using Greene melanoma implanted on pigmented rabbit iris. The parameters used clinically on non-ocular tumors (intravenous 2.5 mg HPd kg-1 body weight and irradiation at 633 nm 48 h later) were totally ineffective in killing Greene melanoma implanted on the iris. The dose of dye (2.5–5 mg kg-1), wavelength of light (500-700 nm), and illumination intensity were varied to determine the most efficient parameters for treating this tumor. The most important parameter was dye dose; increasing it to 5 mg kg-1 resulted in some control of tumor growth. Administering 100% O2 prior to and during irradiation also improved HPd PRT cytotoxicity. The use of pulsed light (pulses of 1 or 2 min) further enhanced killing and reduced the length of irradiation needed. These studies suggested that HPd PRT might be used efficiently on ocular melanomas.  相似文献   

10.
The possibility of extending photodynamic therapy to the treatment of highly pigmented neoplastic lesions was tested by using Si(IV)-naphthalocyanine (SiNc) as a tumor-localizing agent. Si(IV)-naphthalocyanine displays intense absorbance at 776 nm (ɛ= 5 × 105 M−1 cm−1), where melanin absorption becomes weaker. As an experimental model we selected B16 pigmented melanoma subcutaneously transplanted to C57BL mice. Upon injection of 0.5 or 1 mg kg−1 of liposome-incorporated SiNc, maximal accumulation of the photosensitizer in the tumor was observed at 24 h with recoveries of 0.35 and 0.57 μg g−1, respectively. However, the tumor targeting by SiNc shows essentially no selectivity, since the photosensitizer concentrations in the skin (peritumoral tissue) were very similar to those found in the tumor at all postinjection times examined by us. Irradiation of SiNc-loaded melanoma with 776 nm light from a diode laser at 24 h postinjection induces tumor necrosis and delay of tumor growth. The effect appears to be of purely photochemical nature at dose rates up to 260 mW cm−2; at higher dose rates, thermal effects are likely to become important.  相似文献   

11.
Abstract— A kinetic investigation was performed on the photooxidation of methionine sensitized by various porphyrins at different oxygen concentrations. The rate of photooxidation was found to be strongly dependent on the nature of the sensitizer. In the case of hematoporphyrin, chelation of Mg2+ and Zn2+ and especially of Cu2+ and Fe2+ caused a significant decrease of the photosensitizing efficiency. Fluorescence and/or flash photolysis studies showed that such a decrease is ascribed to an enhancement of the non-radiative decay of the first excited singlet state as well as to a reduction of the triplet lifetime. The sensitizing efficiency is also dependent on the nature of the porphyrin side chains. A reaction mechanism involving 1O2 as the oxidizing agent is proposed.  相似文献   

12.
Abstract— The effect of three different fluorescent lighting systems on the growth, reproduction, and lifespan of the C3H/HeN(MTV) mouse has been investigated. The mice were born, weaned, and paired under luminaires containing daylight-simulating (DS; 425 μW/cm2), cool-white (CW; 425μW/cm2) or pink (PK; 234 μW/cm2) fluorescent lights. At the end of the study (19 months), 97% of the females in the DS and CW groups and 100% of females in the PK group had developed mammary tumors. The median times for mammary tumor development were 51 weeks (DS), 47 weeks (CW) and 42 weeks (PK) The median age of the dam at first litter and the median time between the first and second litters were not significantly different for the three lighting conditions. However, there was some evidence that the first litter was significantly delayed in both the CW and PK groups compared to the DS group. There were no significant differences in the total number of litters/dam, the total number of pups/dam, the neonatal mortality of the pups (at birth or weaning), the weights of the pups at weaning or the sex ratios among the three lighting groups. The growth of the male mice was the same under all three lighting conditions. The observed differences in tumor latency and reproduction, between female mice exposed to the DS and CW fluorescent lights, may be related to the different spectral energy distributions of these lighting systems since their irradiances were the same.  相似文献   

13.
Abstract— The tumoricidal effects of photochemotherapy with two photosensitizers, 5-ethylamino-9-diethylaminobenzo[ a ] phenothiazinium chloride (EtNBS) and benzoporphyrin derivative monoacid ring A (BPD-MA), were evaluated separately and in combination against the EMT-6 fibrosarcoma implanted subcutaneously in BALB/c mice. Animals carrying tumors 8-10 mm in diameter were divided into eight different groups (∼20/group) and subjected to various photoirradiation and drug conditions. The tumor response to photodynamic therapy (PDT) was measured as the mean tumor wet weight 2 weeks post-PDT. The combination treatment with 5.25 mg/kg EtNBS and 2.5 mg/kg BPD-MA followed by photoirradiation with 100 J/cm2 at 652 nm and then by 100 J/cm2 at 690 nm resulted in a 95% reduction in the average tumor weights compared to controls (no light, no drugs) with 76% of the mice being tumor free 2 weeks post-PDT. Because treatment with EtNBS or BPD-MA at twice the light dose and drug concentration resulted in either no significant reduction in tumor weights or increased the lethality of treatment, respectively, the data suggest that the enhanced PDT effect observed with the combination of drugs is synergistic rather than additive. Histology of tumors 24 h post-PDT with the combination of drugs showed nearly complete destruction of the tumor mass with little or no damage to the vasculature and no extravasation of red blood cells. There was no damage to the normal skin adjacent to the tumor. Fluorescence microscopy of EMT-6 cells incubated in vitro with the two photosensitizers revealed that they were localized to different intracellular compartments. The fluorescence pattern from frozen tumor tissue slices following the in vivo administration of the photosensitizers indicated a greater intracellular localization for EtNBS vs BPD-MA.  相似文献   

14.
Photodynamic Therapy of Human Glioma (U87) in the Nude Rat   总被引:3,自引:1,他引:3  
Abstract— We measured the response of normal brain and the human U87 glioma implanted in the brain of rats (n = 65) to photodynamic therapy (PDT) using Photofrin as the sensitizer. Normal brain and U87 tumor implanted within brain of athymic (nude) rats were subjected to PDT (12.5 mg/kg of Photofrin) at increasing optical energy doses (35 J/cm2, 140 J/cm2, 280 J/cm2) of 632 nm light. Photofrin concentration in tumor, brain adjacent to tumor and normal brain were measured in a separate population of rats. Twenty-four hours after PDT, the brains were removed, sectioned, stained with hematoxylin and eosin (H&E), and the volumes of the PDT-induced lesion measured. Photofrin concentration in tumor greatly exceeded that of normal brain and brain adjacent to tumor (>20×). Both normal brain and U87 tumor exhibited superficial tissue damage with PDT at 35 J/cm2. However, both normal and tumor-implanted brain exhibited tissue damage with increasing optical dose. A heterogeneous pattern of pannecrosis along with a uniform volume of pannecrosis was detected in the tumor. In contrast, normal brain exhibited a uniform sharply demarcated volume of necrosis. Our data indicate that the U87 human brain tumor model and the normal brain in the athymic rat are sensitive to PDT and Photofrin with an optical dose-dependent response to treatment.  相似文献   

15.
Abstract— The main absorption bands of thionine (Th+) and methylene blue (MB+) in aqueous solution lie at 598 nm and 664 nm, respectively. This position permits excitation energy transfer from Th+ to MB+, but not vice versa. We describe here studies of such transfer between these molecules adsorbed on micelles of sodium lauryl sulfate (SLS), imitating, at least to some extent, the state of pigments in chloroplasts.
The SLS concentration was varied from 3.0 to 11 × 10-3 M. In the presence of dye, aggregation to micelles, each containing 70–100 detergent molecules, begins at about 3.0 × 10-3 M SLS. Practically all dye ions are adsorbed on these micelles as soon as their formation begins.
Energy transfer from adsorbed Th+ ions to adsorbed MB+ ions can be demonstrated by observing the quenching of the fluorescence of thionine and the sensitization of that of methylene blue.
At [Th+] = [MB+] = 1 × 10-5 M , the most efficient energy transfer (82 per cent efficiency, as derived from measurements of the quenching of Th+ fluorescence, or 90 per cent, as derived from sensitization of MB+ fluorescence) is observed at the lowest SLS-concentration (3.0 × 10-3 M ), when the only micelles present are those formed by aggregation of dye-carrying low molecular complexes of SLS with dye cations. Each micelle carries, under these conditions, 10–14 molecules of the two dyes, and the distance between two closest dye ions is about 16 A. Transfer becomes less efficient as the SLS-concentration increases, causing pigment molecules to distribute themselves among a greater number of micelles.  相似文献   

16.
A Si(IV)-phthalocyanine bearing two methoxyethyleneglycol axial ligands bound to the central metal ion (SiPc) has been prepared by chemical synthesis and analyzed for its phototherapeutic activity after administration in a Cremophor or liposome formulation to C57B1/6 mice bearing a subcutaneously transplanted Lewis lung carcinoma (LLC). The maximum drug accumulation in the tumor is found at 24 h after intraperitoneal injection, independent of the delivery system. However, the tumor concentration of SiPc in the Cremophor formulation is about two-fold higher, while the drug concentration in liver and skin shows similar trends with the two delivery systems. The drug accumulation and retention in the brain is much larger when using Cremophor emulsion. Photodynamic therapy (672 nm, 370 mW m−2, 360 J cm−2) at 24 h after the injection of Cremophor emulsion- or DPPC liposome-formulated SiPc causes a very efficient and similar response for the LLC (8 versus 22 mm mean tumor diameter for the control groups at 21 days after phototreatment). These very promising effects, obtained both at higher and lower tumor drug concentrations, clearly demonstrate the potential phototherapeutical activity of the newly synthesized SiPc.  相似文献   

17.
Abstract— The effects of repeated UV exposure on the skin of the European crested newt, Triturus cristatus carnifex , have been investigated. The animals were irradiated 3 times per week with a Westing-house FS40T12 fluorescent sun lamp (wavelength spectrum 275–350 nm). Two groups of animals received the same total fluence of 1.3 × 105 J/m2 in single fluences of either 1570 J/m2 (group A) or 9430 J/m2 (group C), and one group received a total fluence of 2.6 × 105 J/m2 in single fluences of 4710 J/m2 (group B). All the animals were killed 7 months after the first UV exposure, but at different intervals after the last exposure. Striking epidermal hyperplasia was found in the newts irradiated at the lower fluence rate (group A). In the animals given the higher total fluence (group B), the most prominent skin changes were dermal fibrosis and irregular thinning and thickening of the epidermis. No significant skin changes were found in group C., in which if there had been UV lesions, they had been repaired during the 5 month interval between the last irradiation and the killing of the animals. No skin tumors developed in any experimental group.  相似文献   

18.
Abstract The major side effect of photodynamic therapy (PDT) using Photofrin® is enhanced skin sensitivity for sunlight, which persists for 3-8 weeks after injection. Formation of singlet oxygen and radicals is believed to be involved in the basic mechanism of inducing skin damage. Reducing this side effect would make PDT more widely acceptable, particularly for palliative use. Hairless dorsal skin patches of mice, injected with 10 mg kg−1 photofrin intraperitoneally (i.p.) 24 h before illumination, were used to evaluate the effect of increasing light doses. The light was obtained from a halogen lamp and transmitted via a fiber optic to illuminate a field of 2.5 cm2. After establishing a dose-response relationship for single or fractionated light dose illumination of the skin, drugs known to scavenge radicals, quench singlet oxygen or interfere with histamine release were tested for their protective effect. N -acetylcysteine (NAC), a radical scavenger, administered i.p. (1000 and 2000 mg kg−1) 1 h before illumination produced a significant decrease in skin damage at light doses >50 J cm−2 (protection factor of 1.3-1.8). When NAC was administered in a dose of 500 mg kg−1, no protection was observed. Fractionated illumination experiments in combination with multiple injections of NAC (1000 mg kg−1) also failed to show any protection. The addition of Ranitidine®, a histamine blocking agent (25-100 mg kg−1, given prior to illumination, resulted in a limited protection at higher light doses. From this study we conclude that NAC could be of value in amelioration of the photosensitivity in patients treated with PDT.  相似文献   

19.
Abstract Experiments were performed to ascertain whether superoxide anion (O2) was produced by the photodynamic activation of hematoporphyrin derivative (HPD). Three different systems were utilized to detect formation of O2, oxidation of epinephrine to adrenochrome, reduction of cytochrome c and reduction of nitro blue tetrazolium (NBT). The effects on these detectors under identical conditions for HPD + h ν were compared to those obtained with two O2 generating systems, riboflavin + by and xanthine-xanthine oxidase, and to a singlet oxygen generating system, photoradiation of methylene blue. The results indicated that HPD + hv differed from the two O2 generating systems in failing to reduce cytochrome c or NET, and that HPD + h ν was similar to the behavior of methylene blue + h ν . In addition, HPD + h ν but not the O2 generating systems could inhibit mitochondrial cytochrome c oxidase activity. We conclude that the photodynamic activation of HPD does not produce O2 as a major oxygen radical and that the effects of HPD + h ν on mitochondrial cytochrome c oxidase are not caused by O2.  相似文献   

20.
Abstract The use of sodium pentobarbital anesthesia 50 jig gm−1 during localized photodynamic therapy (PDT) was examined in C57BL/6 mice transplanted with the pigmented B-16 melanoma. A 10 mg kg−1 i.p. injection of Photofrin II was administered 24 h prior to light exposure (630 nm, 150 mW, cm−2, 300-500 J cm−2). Separate groups of mice were utilized to monitor tumour temperature and PDT tumor response. Core tumor temperatures decreased by approx. 10oC following sodium pentobarbital administration. Tumor responses were determined by documenting the percentage of treated animals without tumor recurrences for a period of 50 days following PDT. Superior PDT induced tumor responses were obtained in control (non-anesthetized) mice following light doses of 400 and 500 J cm−2. The results of this study indicate that sodium pentobarbital can induce a protective effect on B-16 melanomas treated with PDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号