首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Injection molded microfluidic chips featuring integrated interconnects   总被引:2,自引:0,他引:2  
An injection molding process for the fabrication of disposable plastic microfluidic chips with a cycle time of 2 min has been designed, developed, and implemented. Of the sixteen commercially available grades of cyclo-olefin copolymer (COC) that were screened for autofluorescence and transparency to ultraviolet (UV) light, Topas 8007 x 10 was identified as the most suitable for production. A robust solid metal mold insert defining the microfluidic channels was rapidly microfabricated using a process that significantly reduces the time required for electroplating. No wear of the insert was observed even after over 1000 cycles. The chips were bonded by thermal fusion using different bonding conditions. Each condition was tested and its suitability evaluated by burst pressure measurements. The COC microfluidic chips feature novel, integrated, reversible, standardized, ready-to-use interconnects that enable operation at pressures up to 15.6 MPa, the highest value reported to date. The suitability of these UV transparent, high pressure-resistant, disposable devices was demonstrated by in situ preparation of a high surface area porous polymer monolith within the channels.  相似文献   

2.
This communication reports a new method to form multilevel features in a single layer of SU-8 photoresist to facilitate the generation of 3D microfluidic chips. The method utilizes the spatial dependence of diffracted light intensity to selectively overexpose masked regions of photoresist and requires only a UV light source and a single transparency mask. 3D structures are formed within microfluidic channels using this selective overexposure method, with feature sizes being determined by the exposure dose and mask feature sizes. The dimensions of the internal features and the microfluidic channels can be varied independently according to these parameters, and any number of different heights can be obtained in a single exposure step. The method provides a simple means of forming 3D microfluidic structures with integrated features, including mixing structures, flow stabilization ridges, and separation weirs to increase the capabilities of microfluidic chips in a variety of microchemical applications.  相似文献   

3.
We present a novel approach for the ultra-rapid direct patterning of complex three-dimensional, stacked polystyrene (PS) microfluidic chips. By leveraging the inherent shrinkage properties of biaxially pre-stressed thermoplastic sheets, microfluidic channels become thinner and deeper upon heating. Design conception to fully functional chips can thus be completed within minutes.  相似文献   

4.
Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary.  相似文献   

5.
We show that it is possible to use single layer soft lithography to create deformable polymer membranes within microfluidic chips for performing a variety of microfluidic operations. Single layer microfluidic chips were designed, fabricated, and characterized to demonstrate pumping, sorting, and mixing. Flow rates as high as 0.39 microl min(-1) were obtained by peristaltic pumping using pneumatically-actuated membrane devices. Sorting was attained via pneumatic actuation of membrane units placed alongside the branch channels. An active mixer was also demonstrated using single-layer deformable membrane units.  相似文献   

6.
Lee SK  Yi GR  Yang SM 《Lab on a chip》2006,6(9):1171-1177
In this paper, we report a rapid and facile method for fabricating colloidal photonic crystals inside microchannels of radially symmetric microfluidic chips which were made using soft-lithography. As the suspension of monodisperse silica or polystyrene latex spheres was driven to flow through the channels under the action of centrifugal force, the colloidal spheres were quickly assembled into face centered cubic arrangement which had a few photonic stop bands. The soft-microfluidic channels and cells confined the colloidal crystals into designed patterns. The optical reflectance was modulated by the refractive-index mismatch between the colloidal particles and the solvent in the interstices between the particles. Therefore, the present microfluidic chips with built-in colloidal photonic crystals can be used as in-situ optofluidic microsensors for high throughput screening or light filters in integrated adaptive optical devices.  相似文献   

7.
Gan Z  Zhang L  Chen G 《Electrophoresis》2011,32(23):3319-3323
In this report, a solvent bonding method based on phase-changing agar hydrogel has been developed for the fabrication of poly(methyl methacrylate) (PMMA) microfluidic chips. Prior to bonding, the channels and the reservoir ports on PMMA channel plates were filled with molten agar hydrogel that could gelate to form solid sacrificial layers at room temperature. Subsequently, PMMA cover sheets were covered on the channeled plates and 1,2-dichlororethane was applied to the interspaces between them. The agar hydrogel in the channels could prevent the bonding solvent and the softened surface of the PMMA cover sheets from filling in the channels. After solvent bonding, the agar hydrogel in the channels and the reservoir ports was melted and removed under pressure. The sealed channels in the complete microchips had been examined by an optical microscope and a scanning electron microscope. The results indicated that high-quality bonding was achieved at room temperature. The prepared microfluidic microchips have been successfully employed in the electrophoresis separation and detection of three cations in combination with contactless conductivity detection.  相似文献   

8.
Packaging of microfluidic chips via interstitial bonding technique.   总被引:2,自引:0,他引:2  
In this paper, we describe an interstitial bonding technique for packaging of microfluidic chips. The cover plate is first placed on top of the microfluidic chip, followed by dispensing the UV-curable resin into the resin-loading reservoirs. With the interstitial space between the cover plate and the microfluidic chip connecting to the loading reservoirs, the UV-curable resin wicks through capillary force action and hydrostatic pressure generated by the liquid level in the resin-loading reservoirs. When reaching the microchannels, the UV-curable resin stops flowing into the microchannels due to the force balance between the surface tension and hydrostatic pressure. The assembly is then placed under the UV light, followed by further curing in the thermal oven. It is found that there is no leakage from the bonded microfluidic chips and a good DNA separation result was obtained by using the microfluidic chips as fabricated. This bonding technique is relatively simple and fast, which can be applied to the packaging of microfluidic chips made from hybrid materials with complicated designs as long as the interstitial space connects to the loading reservoirs.  相似文献   

9.
We present a new family of microfluidic chips hot embossed from a commercial fluorinated thermoplastic polymer (Dyneon THV). This material shares most of the properties of fluoro polymers (very low surface energy and resistance to chemicals), but is easier to process due to its relatively low melting point. Finally, as an elastic material it also allows easy world to chip connections. Fluoropolymer films can be imprinted by hot embossing from PDMS molds prepared by soft lithography. Chips are then sealed by an original technique (termed Monolithic-Adhesive-Bonding), using two different grades of fluoropolymer to obtain uniform mechanical, chemical and surface properties. This fabrication process is well adapted to rapid prototyping, but it also has potential for low cost industrial production, since it does not require any curing or etching step. We prepared microfluidic devices with micrometre resolution features, that are optically transparent, and that provide good resistance to pressure (up to 50 kPa). We demonstrated the transport of water droplets in fluorinated oil, and fluorescence detection of DNA within the droplets. No measurable interaction of the droplets with the channels wall was observed, alleviating the need for surface treatment previously necessary for droplet applications in microfluidic chips. These chips can also handle harsh organic solvents. For instance, we demonstrated the formation of chloroform droplets in fluorinated oil, expanding the potential for on chip microchemistry.  相似文献   

10.
Quantification of protein-protein and ligand-substrate interactions is central to understanding basic cellular function and for evaluating therapeutics. To mimic biological conditions, such studies are best executed without modifying the proteins or ligands (i.e., label-free). While tools for label-free assays exist, they have limitations making them difficult to fully integrate into microfluidic devices. Furthermore, it has been problematic to reduce detection volumes for on-channel universal analyte quantification without compromising sensitivity, as needed in label-free methods. Here we show how backscattering interferometry in rectangular channels (BIRC) facilitates label-free studies within picoliter volumes. The simple and unique optical train was based on rectangular microfluidic channels molded in poly(dimethylsiloxane) and low-power coherent radiation. Quantification of irreversible streptavidin-biotin binding and reversible protein A-human IgG Fc molecular interactions in a 225 pL detection volume was carried out label-free and noninvasively. Detection limits of 47 x 10(-15) mol of biotin reacted with surface-immobilized streptavidin were achieved. In the case of reversible interactions of protein A and the Fc fragment of human IgG, detection limits were determined to be 2 x 10(-15) mol of IgG Fc. These experiments demonstrate for the first time that (1) high-sensitivity universal solute quantification is possible using interferometry performed within micrometer-sized channels formed in inexpensive PDMS chips, (2) label-free reversible molecular interaction can be studied with femtomoles of solute, and (3) BIRC has the potential to quantify binding affinities in a high-throughput format.  相似文献   

11.
W Shen  M Li  C Ye  L Jiang  Y Song 《Lab on a chip》2012,12(17):3089-3095
Integrating photonic crystals (PC) into microfluidic systems has attracted immense interest for its novel functions. However, it is still a great challenge to fabricate PC microfluidic chips rapidly with complex functions. In this work, a direct-writing colloidal PC microchannel was firstly achieved by inkjet printing and was used for the surface-tension-confined microfluidic immune assay. PC channels with different structure colors have been successfully integrated on one chip. The fabricated chip has the advantages of rapid fabrication, quick fluidic transport and can monitor the fluidic fluxion using the naked eye. Utilizing this PC microfluidic chip, a colorimetric label-free immune assay was realized without nonspecific adsorption interference of the target.  相似文献   

12.
玻璃微流控芯片廉价快速制作方法的研究   总被引:3,自引:0,他引:3  
研究了一种玻璃微流控芯片的快速、低成本制作工艺和方法. 该方法采用商品化的显微载玻片(soda-lime玻璃)作为芯片基质材料, 利用AZ 4620光刻胶代替传统工艺中的溅射金属层或多晶硅/氮化硅层作为玻璃刻蚀的掩膜层, 同时利用一种紫外光学胶键合方法代替传统熔融键合方法实现芯片的键合, 整个工艺对玻璃基质材料要求低, 普通微流控芯片(深度小于50 μm)制作流程仅需约3.5 h, 可降低制作成本, 缩短制作周期. 还系统地研究了光刻胶厚度、光刻胶硬烘时间和玻璃腐蚀液配比对玻璃微流控芯片制作的影响, 获得了优化的工艺参数.  相似文献   

13.
曹荣凯  张敏  于浩  秦建华 《色谱》2022,40(3):213-223
循环肿瘤细胞(CTCs)的分离分析一直是肿瘤相关研究中的热点方向,作为液体活检的重要标志物之一,其在外周血中的含量与癌症病发状况密切相关.然而人体血液中CTCs的含量非常低,通常来说仅有0~10个/mL,因此在开展临床血液样本中CTCs的检测前,往往需要对样本进行前处理,以实现CTCs的分离和富集.微流控芯片技术凭借样...  相似文献   

14.
严伟  徐德顺  查赟峰  吴晓芳 《色谱》2016,34(11):1043-1047
建立了基于微流控芯片的乳腺癌微环境酸化模型和动态检测微环境酸化情况的分析方法。设计了一种多层复合式微流控芯片,将乳腺癌细胞悬液引入含有水凝胶前体的芯片培养室后,在硝酸纤维素薄膜上固化形成3D培养支架。芯片通道连续灌流模拟血流供应,并将非电化学的pH检测器引入芯片,通过图像分析得到实时的pH变化。通过观察癌细胞的存活率、增殖率、乳酸水平及pH值,分析微环境的酸化情况,同时与正常细胞进行比较。结果表明,连续灌流培养7 d,乳腺癌细胞的存活率保持在90%以上;随着培养天数的增加,芯片上癌细胞微环境的pH值逐渐降低,且灌流速度越低,pH值下降越明显,而正常细胞微环境的pH值无明显变化。基于微流控芯片的微环境酸化检测平台可实时动态检测微环境的pH值,有望成为相关肿瘤研究的有力工具。  相似文献   

15.
We report the fabrication of high quality monolithically integrated optical long-pass filters, for use in disposable diagnostic microchips. The filters were prepared by incorporating dye molecules directly into the microfluidic chip substrate, thereby providing a fully integrated solution that removes the usual need for discrete optical filters. In brief, lysochrome dyes were added to a poly(dimethylsiloxane) (PDMS) monomer prior to moulding of the microchip from a structured SU-8 master. Optimum results were obtained using 1 mm layers of PDMS doped with 1200 microg mL(-1) Sudan II, which resulted in less than 0.01% transmittance below 500 nm (OD 4), >80% above 570 nm, and negligible autofluorescence. These spectral characteristics compare favourably with commercially available Schott-glass long-pass filters, indicating that high quality optical filters can be straightforwardly integrated into the form of PDMS microfluidic chips. The filters were found to be robust in use, showing only slight degradation after extended illumination and negligible dye leaching after prolonged exposure to aqueous solutions. The provision of low cost high quality integrated filters represents a key step towards the development of high-sensitivity disposable microfluidic devices for point-of-care diagnostics.  相似文献   

16.
In glass/poly(dimethylsiloxane) (PDMS) hybrid microfluidic chips, two different fabrication approaches are used: photolithographic or solid ink molds, or cast-and-peel methods. In the latter, a thin slab of PDMS is laid down and fluid channels are cut manually or by machine. The cast-and-peel approach has been used successfully for low-shear culture devices, among other applications. The main drawback, not reported to date, of cast-and-peel methods is that removal of PDMS (exposing the glass substrate) results in nanoscopic domains of PDMS still attached to the surface. This residual PDMS is not observable by eye, but affects the hydrophobicity of the device. Using contact angle measurement, atomic force and fluorescence microscopy, the changes in glass surfaces from the cast-and-peel technique were elucidated. This study demonstrates the enhanced protein (NeutrAvidin) adsorption on PDMS treated glass surfaces, and the potential influence of altered glass properties on microfluidic applications has been discussed as well.  相似文献   

17.
We present a fast and versatile method to produce functional micro free-flow electrophoresis chips. Microfluidic structures were generated between two glass slides applying multistep liquid-phase lithography, omitting troublesome bonding steps or cost-intensive master structures. Utilizing a novel spacer-less approach with the photodefinable polymer polyethyleneglycol dimethacrylate (PEG-DA), microfluidic devices with hydrophilic channels of only 25 μm in height were generated. The microfluidic chips feature ion-permeable segregation walls between the electrode channels and the separation bed and hydrophilic surfaces. The performance of the chip is demonstrated by free-flow electrophoretic separation of fluorescent xanthene dyes and fluorescently labeled amino acids.  相似文献   

18.
Huang FC  Chen YF  Lee GB 《Electrophoresis》2007,28(7):1130-1137
This study presents a new packaging method using a polyethylene/thermoplastic elastomer (PE/TPE) film to seal an injection-molded CE chip made of either poly(methyl methacrylate) (PMMA) or polycarbonate (PC) materials. The packaging is performed at atmospheric pressure and at room temperature, which is a fast, easy, and reliable bonding method to form a sealed CE chip for chemical analysis and biomedical applications. The fabrication of PMMA and PC microfluidic channels is accomplished by using an injection-molding process, which could be mass-produced for commercial applications. In addition to microfluidic CE channels, 3-D reservoirs for storing biosamples, and CE buffers are also formed during this injection-molding process. With this approach, a commercial CE chip can be of low cost and disposable. Finally, the functionality of the mass-produced CE chip is demonstrated through its successful separation of phiX174 DNA/HaeIII markers. Experimental data show that the S/N for the CE chips using the PE/TPE film has a value of 5.34, when utilizing DNA markers with a concentration of 2 ng/microL and a CE buffer of 2% hydroxypropyl-methylcellulose (HPMC) in Tris-borate-EDTA (TBE) with 1% YO-PRO-1 fluorescent dye. Thus, the detection limit of the developed chips is improved. Lastly, the developed CE chips are used for the separation and detection of PCR products. A mixture of an amplified antibiotic gene for Streptococcus pneumoniae and phiX174 DNA/HaeIII markers was successfully separated and detected by using the proposed CE chips. Experimental data show that these DNA samples were separated within 2 min. The study proposed a promising method for the development of mass-produced CE chips.  相似文献   

19.
近年来,微流控纸芯片由于低成本、便携化、检测快等优点,在需要快速检测的环境分析领域中展现出了巨大的应用前景。该综述从微流控纸芯片在环境分析中的应用角度,总结归纳了微流控纸芯片在环境分析中的最新研究进展,并展望了其在未来的发展趋势与挑战。论文内容引用150余篇源于科学引文索引(SCI)与中文核心期刊中的相关论文。该综述包括微流控纸芯片在环境检测中的优势与制造方法介绍;电化学法、荧光法、比色法、表面增强拉曼法、集成传感法等基于纸芯片的先进分析方法介绍;根据环境分析目标物种类,如重金属离子、营养盐、农药、微生物、抗生素以及其他污染物等,对纸芯片的最新应用现状进行了举例评述;基于微流控纸芯片的环境分析研究的未来发展趋势和前景展望。通过综述近期相关研究,表明微流控纸芯片从提出至今虽然只有十几年的发展历程,但其在环境分析研究中的发展却十分迅速。微流控纸芯片可以根据不同的环境条件和检测要求灵活选择制作与分析方法,实现最佳的检测效果。但是微流控纸芯片也面临一些挑战,如纸张机械强度不足、流体控制程度不佳等问题。这些问题指出了微流控纸芯片在环境检测领域的发展趋势,相信随着不断深入的研究,纸芯片将会在未来的环境分析中发挥更大作用。  相似文献   

20.
Wang L  Zhang M  Li J  Gong X  Wen W 《Lab on a chip》2010,10(21):2869-2874
We report the successful realization of a microfluidic chip with switching and corresponding inverting functionalities. The chips are identical logic control components incorporating a type of smart colloid, giant electrorheological fluid (GERF), which possesses reversible characteristics via a liquid-solid phase transition under external electric field. Two pairs of electrodes embedded on the sides of two microfluidic channels serve as signal input and output, respectively. One, located in the GERF micro-channel is used to control the flow status of GERF, while another one in the ither micro-fluidic channel is used to detect the signal generated with a passing-by droplet (defined as a signal droplet). Switching of the GERF from the suspended state (off-state) to the flowing state (on-state) or vice versa in the micro-channel is controlled by the appearance of signal droplets whenever they pass through the detection electrode. The output on-off signals can be easily demonstrated, clearly matching with GERF flow status. Our results show that such a logic switch is also a logic IF gate, while its inverter functions as a NOT gate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号