首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative relations governing the penetration of helium atoms into various types of solids in the course of their plastic deformation in liquid 3He (T = 0.6–1.8 K) and 4He (T = 4.2 K) and dispersion in gaseous helium at 300 K were obtained and analyzed. Experiments were carried out on metals with different lattice types, ionic single crystals, amorphous alloys, and barite and titanium dioxide powders dispersed in helium. Curves illustrating helium extraction from deformed specimens under dynamic annealing were obtained. The temperature range of helium extraction was found to correlate with the melting temperature and the initial and deformed structures of a material, which determine the number and character of helium traps present in the material. The dependence of helium penetration intensity on the type of defects forming under plastic deformation for various materials, as well as the formation of chemical bonds of helium atoms to the defected structure of these materials, is discussed.  相似文献   

2.
Undoped and lanthanum-doped Bi2201 single crystals having a perfect average structure have been comparatively studied by x-ray diffraction. The undoped Bi2201 single crystals exhibit very narrow satellite reflections; their half-width is five to six times smaller than that of Bi2212 single crystals grown by the same technique. This narrowness indicates three-dimensional defect ordering in the former crystals. The lanthanumdoped Bi2201 single crystals with x = 0.7 and T c = 8–10 K exhibit very broad satellite reflections consisting of two systems (modulations) misoriented with respect to each other. The modulation-vector components of these two modulations are found to be q 1 = 0.237b* + 0.277c* and q 2 = 0.238b* + 0.037c*. The single crystals having a perfect average structure and a homogeneous average distribution of doping lanthanum consist of 70-to 80-Å-thick layers that alternate along the c axis and have two different types of modulated superlattice. The crystals having a less perfect average structure also consist of alternating layers, but they have different lanthanum concentrations. The low value of T c in the undoped Bi2201 single crystals (9.5 K) correlates with three-dimensional defect ordering in them, and an increase in T c to 33 K upon lanthanum doping can be related to a thin-layer structure of these crystals and to partial substitution of lanthanum for the bismuth positions.  相似文献   

3.
The temperature dependences of the conductivities parallel and perpendicular to the layers in layered TlGaSe2 single crystals are investigated in the temperature range from 10 K to 293 K. It is shown that hopping conduction with a variable hopping length among localized states near the Fermi level takes place in TlGaSe2 single crystals in the low-temperature range, both along and across the layers. Hopping conduction along the layers begins to prevail over conduction in an allowed band only at very low temperatures (10–30 K), whereas hopping conduction across the layers is observed at fairly high temperatures (T?210 K) and spans a broader temperature range. The density of states near the Fermi level is determined, N F=1.3×1019eV·cm3)?1, along with the energy scatter of these states J=0.011 eV and the hopping lengths at various temperatures. The hopping length R along the layers of TlGaSe2 single crystals increases from 130 Å to 170 Å as the temperature is lowered from 30 K to 10 K. The temperature dependence of the degree of anisotropy of the conductivity of TlGaSe2 single crystals is investigated.  相似文献   

4.
The strain characteristics of nanocrystalline niobium are measured in the temperature range 4.2–300 K. It is shown that the development of a strong local deformation with clearly delineated macroscopic slip bands occurs at 4.2 K and 10 K. The thermal effects at a stress jump observed upon transition of the sample (or a niobium strip placed close to the sample) from the superconducting state to the normal state are estimated. It is demonstrated that the temperature dependence of the yield point σs(T) can be divided into three portions: two portions (T<10 K and T>70 K) with a slight change in σs and the third portion with a strong dependence σs(T). The strain characteristics of polycrystals with nano-and larger-sized grains are compared with those of single crystals.  相似文献   

5.
The submillimeter (f=130–1250 GHz) magnetoabsorption spectra of strained Ge/GeSi(111) multilayer heterostructures with quantum wells are investigated at T=4.2 K upon band-gap optical excitation. It is found that the magnetoabsorption spectra contain lines associated with the excitation of residual shallow acceptors. The resonance absorption observed can be initiated by optical transitions between the impurity states belonging to two pairs of Landau levels of holes in germanium quantum-well layers.  相似文献   

6.
The 0.68 eV photoluminescence band present in undoped semi-insulating GaAs crystals has been studied with the change of temperature. It is shown that the 0.68 eV band is due to the radiative transition involving a main deep donor and the valence band. The origin of the donor is of an intrinsic origin and may involve an As antisite defect. It is found that the donor level does not change in energy with respect ot the valence band at T = 4–300 K. The donor level is found to be at 0.73 eV from the conduction band at T = 4 K.  相似文献   

7.
With respect to single crystals of Nb3S4 the electrical resistivity from 2.8 K to 300 K and the magnetoresistance at 4.2 K were measured. The resistivity is represented as a sum of a temperature independent and an intrinsic temperature dependent component. The temperature dependence of the intrinsic resistivity subjects to T3 form between 7 and 50 K above which it becomes weaker than T3 approaching a T linear from. This behaviour is discussed in terms of the electron-electron Umklapp scattering. The ratio of the resistivities perpendicular and parallel to the c-axis takes about 15 between room temperature and 50 K. The transverse magnetoresistance is proportional to the magnetic field. The longitudinal magnetoresistance is too small to be measured.  相似文献   

8.
Antiferromagnetic ErAgSn compound was investigated in detail by 119Sn Mössbauer spectroscopy in a temperature range between 2.2 and 300 K. The 119Sn spectra recorded below 4.2 K can be well fitted with a single main magnetic component in agreement with recent neutron diffraction studies [1]. A broad distribution of magnetic hyperfine fields observed above 4.2 K and enhanced spin correlations among Er3+ ions at T > T N = 5.6 K are the remarkable features of the investigated system.  相似文献   

9.
The strain distribution was experimentally studied in CaF2 crystals subjected to compression tests along [110] and [112] at a constant strain rate at temperatures T = 373–1253 K. At T > 845 K, the plastic deformation in deformed samples is found to be strongly localized in narrow bands, where the shear strain reaches several hundred percent. The physical deformation conditions are determined under which the plastic flow loses its stability and, as a result, the deformation is localized. The temperature dependence of the critical stress of the transition to a localized flow is found. A scenario is proposed for the nucleation and development of large localized shears during high-temperature deformation of single crystals.  相似文献   

10.
《Infrared physics》1993,34(6):655-659
The relaxation processes of the photoexcited carriers from the defect level in the band gap to the valence band states were investigated in Na and Tl doped p-type PbTe single crystals at T = 77 K. The observed photosignal oscillations were proved to be induced by stimulated recombination of photoexcited carriers from the defect level Ed ≈ 50 meV above the top of the valence band. Non-equilibrium carrier inversion population was produced by impulses of a TEA CO2-laser. The observed stimulated recombination may presumably be used for designing IR semiconductor lasers operating in the wavelength range of λ ∼ 25 μm at T = 77 K.  相似文献   

11.
The magnetic properties of a collection of single crystals of NpAs2 have been investigated in the temperature range 4.2-300 K and in applied fields up to 100 kOe. For small magnetic fields (3 kOe), NpAs2 is ferromagnetic up to TIC=18 K, antiferromagnetic from 28 K to TN=52 K, then paramagnetic. Both transitions are first order. When the applied field increases TIC is shifted towards TN. The antiferromagnetic phase disappears for H#62;30 kOe. The ferromagnetic range is characterized by a very large anisotropy. In the paramagnetic state, NpAs2 has an effective moment 1.88 μB.  相似文献   

12.
Elastic constants of Cr3Si have been measured on single crystals oriented along [110] and [100] as a function of temperature between 4.2 and 300 K. Their magnitudes at 4.2 K are in unit of 1011 Nm-2C44 = 1.32C' = (C11?C12)/2 = 1.58B = 1.99 There is no peculiar behaviour as a function of temperature.  相似文献   

13.
Birefringence of PbGa2S4 single crystals is studied in the spectral range of 0.45–0.8 μm at T = 300 K. The obtained results are analyzed, and conclusions on the bond character in lead thiogallate are drawn.  相似文献   

14.
Magnetic hysteresis loops reflect the variety of magnetic domain structures and have been considered to have normal rectangular or leaf-like shapes in standard ferromagnets such as Fe and Ni metals. We report on observations of constricted hysteresis loops in Fe and Ni single crystals with very low defect densities. The constricted loops were observed below T=150 K and in a medium temperature range from 150 to 430 K in Fe and Ni single crystals, respectively. These constricted loops disappear by weak plastic deformation for both single crystals. The origin of constricted hysteresis loops was explained by eddy current effects under less domain wall pinning due to dislocations.  相似文献   

15.
Electron paramagnetic resonance measurements in single crystals of NiSiF6. 6D2O were made at K, Ku and Ka bands at 4.2 K and between 77 K and 300 K. The measured g values were in the range 2.23–2.26, while the zero-field splitting parameter D varied from ?(0.185 ± 0.005) cm?1 at 4.2 K to ?(0.53 ± 0.01) cm?1 at 298 K. The parameters of the trimolecular hexagonal unit cell were determined to be approximately a = 9.28 Å, c = 9.58 Å from powder X-ray diffraction measurements at room temperature.  相似文献   

16.
The submillimeter (?ω=0.5–5 meV) magnetoabsorption spectra of strained Ge/Ge1?xSix(111) multilayer heterostructures with thick Ge layers (dGe=300–850 Å, dGeSi≈200 Å, x≈0.1) are investigated at T=4.2 K upon band-gap optical excitation. It is revealed that the absorption spectra contain cyclotron resonance lines of 1L electrons localized in GeSi solid solution layers (unlike the previously studied structures with thin Ge layers as quantum wells for 3L electrons). The absorption spectra of the samples with thick Ge layers (dGe=800–850 Å) exhibit cyclotron resonance lines of holes due to transitions from the lower Landau levels in the first quantum-well subband to the Landau levels belonging to the third and fifth higher subbands.  相似文献   

17.
Myoglobin crystals are investigated by Rayleigh scattering of Mössbauer radiation at T = 87 K and T = 300 K and angles up to sin(?)/λ = 0.44 Å?1. The results are analysed in terms of normal modes.  相似文献   

18.
High energy electron irradiation of ZnTe crystals at 4 K gives rise to a new luminescence line at 2.361 eV and to a broad band at 1.578 eV. These features disappear on annealing at T? 180 K. The defect responsible for these radiative transitions is tentatively identified with Frenkel type close pair. Another broad line at 2.065 eV appears after a 77 irradiation. Its annealing temperature is near 300 K.  相似文献   

19.
The quadrupole 209Bi spin–spin and spin–lattice relaxation were studied within 4.2–300 K for pure and doped Bi4Ge3O12 single crystals which exhibit, as was previously found, anomalous magnetic properties. The results revealed an unexpectedly strong influence of minor amounts of paramagnetic dopants (0.015–0.5 mol.%) on the relaxation processes. Various mechanisms (quadrupole, crystal electric field, electron spin fluctuations) govern the spin–lattice relaxation time T 1 in pure and doped samples. Unlike T 1, the spin–spin relaxation time T 2 for pure and Nd-doped samples was weakly dependent on temperature within 4.2–300 K. Doping Bi4Ge3O12 with paramagnetic atoms strongly elongated T 2. The elongation, although not so strong, was also observed for pure and doped crystals under the influence of weak (~30 Oe) external magnetic fields. To confirm the conclusion about strong influence of crystal field effects on the temperature dependence of T 1 in the temperature range 4.2–77 K, the magnetization vs. temperature and magnetic field was measured for Nd- and Gd-doped Bi4Ge3O12 crystals using a SQUID magnetometer. The temperature behavior of magnetic susceptibility for the Nd-doped crystal was consistent with the presence of the crystal electric field effects. For the Gd-doped crystal, the Brillouin formula perfectly fitted the curve of magnetization vs. magnetic field, which pointed to the absence of the crystal electric field contribution into the spin–lattice relaxation process in this sample.  相似文献   

20.
The magnitude and dispersion of birefringence of single crystals of CuGa(S1?x Sex)2 solid solutions is studied in the spectral region of 0.5–2.5 μ at T=300 K. The effect of the substitution of selenium for sulfur on special features of birefringence dispersion is analyzed within the framework of the single-oscillator model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号