首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present grazing-incidence Fourier transform infrared and AFM data of Au, Al, and Ti vapor-deposited onto self-assembled monolayers (SAMs) of conjugated mono- and dithiols. SAMs of 4,4'-dimercapto-p-quaterphenyl, 4,4"-dimercapto-p-terphenyl, and 4,4'-dimercapto-p-biphenyl have reactive thiols at the SAM/vacuum interface that interact with vapor-deposited Au or Al atoms, preventing metal penetration. Conjugated monothiols lack such metal blocking groups, and metals (Au, Al) can penetrate into their SAMs. Vapor deposition of Ti onto conjugated mono- and dithiol SAMs and onto hexadecanethiol SAMs destroys the monolayers.  相似文献   

2.
Dielectric properties of dithiol self-assemble monolayers (SAMs) under ac electric field were presented. Using a Hg-SAM/SAM-Hg junction, the ac impedances of dithiol SAMs were measured using a sinusoidal perturba- tion of 30 mV (peak-to-peak) with the frequency ranging from 1 Hz to 1 MHz at zero bias. The contributions from dithiol SAMs and solvent interlayers were separated due to their different behaviors at ac impedance. The peak position in the loss spectra (the plot of tg± vs: frequency) moves to low frequency with the increase of chain length of dithiols. Using a correlation of peak position with the chain length, the active energies of 23-39 meV for dithiol SAMs of C6-C10 under an ac electric field were derived.  相似文献   

3.
A systematic study of cross-linking chemistry of the Au(25)(SR)(18) nanomolecule by dithiols of varying chain length, HS-(CH(2))(n)-SH where n = 2, 3, 4, 5, and 6, is presented here. Monothiolated Au(25) has six [RSAuSRAuSR] staple motifs on its surface, and MALDI mass spectrometry data of the ligand exchanged clusters show that propane (C3) and butane (C4) dithiols have ideal chain lengths for interstaple cross-linking and that up to six C3 or C4 dithiols can be facilely exchanged onto the cluster surface. Propanedithiol predominately exchanges with two monothiols at a time, making cross-linking bridges, while butanedithiol can exchange with either one or two monothiols at a time. The extent of cross-linking can be controlled by the Au(25)(SR)(18) to dithiol ratio, the reaction time of ligand exchange, or the addition of a hydrophobic tail to the dithiol. MALDI MS suggests that during ethane (C2) dithiol exchange, two ethanedithiols become connected by a disulfide bond; this result is supported by density functional theory (DFT) prediction of the optimal chain length for the intrastaple coupling. Both optical absorption spectroscopy and DFT computations show that the electronic structure of the Au(25) nanomolecule retains its main features after exchange of up to eight monothiol ligands.  相似文献   

4.
The tunneling resistance and electronic structure of metal-molecule-metal junctions based on oligoacene (benzene, naphthalene, anthracene, and tetracene) thiol and dithiol molecules were measured and correlated using conducting probe atomic force microscopy (CP-AFM) in conjunction with ultraviolet photoelectron spectroscopy (UPS). Nanoscopic tunnel junctions (~10 nm(2)) were formed by contacting oligoacene self-assembled monolayers (SAMs) on flat Ag, Au, or Pt substrates with metalized AFM tips (Ag, Au, or Pt). The low bias (<0.2 V) junction resistance (R) increased exponentially with molecular length (s), i.e., R = R(0) exp(βs), where R(0) is the contact resistance and β is the tunneling attenuation factor. The R(0) values for oligoacene dithiols were 2 orders of magnitude less than those of oligoacene thiols. Likewise, the β value was 0.5 per ring (0.2 ?(-1)) for the dithiol series and 1.0 per ring (0.5 ?(-1)) for the monothiol series, demonstrating that β is not simply a characteristic of the molecular backbone but is strongly affected by the number of chemical (metal-S) contacts. R(0) decreased strongly as the contact work function (Φ) increased for both monothiol and dithiol junctions, whereas β was independent of Φ within error. This divergent behavior was explained in terms of the metal-S bond dipoles and the electronic structure of the junction; namely, β is independent of contact type because of weak Fermi level pinning (UPS revealed E(F) - E(HOMO) varied only weakly with Φ), but R(0) varies strongly with contact type because of the strong metal-S bond dipoles that are responsible for the Fermi level pinning. A previously published triple barrier model for molecular junctions was invoked to rationalize these results in which R(0) is determined by the contact barriers, which are proportional to the size of the interfacial bond dipoles, and β is determined by the bridge barrier, E(F) - E(HOMO). Current-voltage (I-V) characteristics obtained over a larger voltage range 0-1 V revealed a characteristic transition voltage V(trans) at which the current increased more sharply with voltage. V(trans) values were generally >0.5 V and were well correlated with the bridge barrier E(F) - E(HOMO). Overall, the combination of electronic structure determination by UPS with length- and work function-dependent transport measurements provides a remarkably comprehensive picture of tunneling transport in molecular junctions based on oligoacenes.  相似文献   

5.
Construction of permanent metal-molecule-metal (MMM) junctions, though technically challenging, is desirable for both fundamental investigations and applications of molecule-based electronics. In this study, we employed the nanotransfer printing (nTP) technique using perfluoropolyether (PFPE) stamps to print Au thin films onto self-assembled monolayers (SAMs) of alkanedithiol formed on Au thin films. We show that the resulting MMM junctions form permanent and symmetrical tunnel junctions, without the need for an additional protection layer between the top metal electrode and the molecular layer. This type of junction makes it possible for direct investigations into the electrical properties of the molecules and the metal-molecule interfaces. Dependence of transport properties on the length of the alkane molecules and the area of the printed Au electrodes has been examined systematically. From the analysis of the current-voltage (I-V) curves using the Simmons model, the height of tunneling barrier associated with the molecule (alkane) has been determined to be 3.5 ± 0.2 eV, while the analysis yielded an upper bound of 2.4 eV for the counterpart at the interface (thiol). The former is consistent with the theoretical value of ~3.5-5.0 eV. The measured I-V curves show scaling with respect to the printed Au electrode area with lateral dimensions ranging from 80 nm to 7 μm. These results demonstrate that PFPE-assisted nTP is a promising technique for producing potentially scalable and permanent MMM junctions. They also demonstrate that MMM structures (produced by the unique PFPE-assisted nTP) constitute a reliable test bed for exploring molecule-based electronics.  相似文献   

6.
The solution self-assembly of alpha,omega-alkanedithiols onto Au(111) was investigated using atomic force microscopy (AFM). A heterogeneous surface morphology is apparent for 1,8-octanedithiol and for 1,9-nonanedithiol self-assembled monolayers (SAMs) prepared by solution immersion as compared to methyl-terminated n-alkanethiols. Local views from AFM images reveal a layer of mixed molecular orientations for alpha,omega-alkanedithiols, which evidence surface structures with heights corresponding to both lying-down and standing-up orientations. For dithiol SAMs prepared by solution self-assembly, the majority of alpha,omega-alkanedithiol molecules chemisorb with both thiol end groups bound to the Au(111) surface with the backbone of the alkane chain aligned parallel to the surface. However, AFM images disclose that there are also islands of standing molecules scattered throughout the surface. To measure the thickness of alpha,omega-alkanedithiol SAMs with angstrom sensitivity, methyl-terminated n-alkanethiols with known dimensions were used as molecular rulers. Under conditions of spatially constrained self-assembly, nanopatterns of alpha,omega-alkanedithiols written by nanografting formed monolayers with heights corresponding to an upright configuration.  相似文献   

7.
Assemblies of closed nanoparticles have focused interest because they exhibit new optical and chemical properties. The use of a 1D covalent strategy for quantum dots-assemblies has been proposed in this work as novelty. It was studied the effect of use different dithiols, including aromatic and aliphatic dithiol compounds, on the formation of QDs-assemblies in order to establish the influence of the linker's structure on the geometry of the assemblies, and hence on their properties. As a second part of the work, the changes on analytical response to analytes thanks to the formation of QDs-assemblies when dithiols are added were studied for firs time. For this study, some biogenic amines were selected as target analytes. We observed an improvement of 2.7–4 times in the sensitivity, expressed as slope of the calibration graph, when the dithiols were added to the system obtaining QDs-assemblies.  相似文献   

8.
We report studies on the modifications induced by the evaporation of copper overlayers on a self-assembled monolayer (SAM) of the oligo(phenylene-ethynyl) dithiol, 1-thio-4-[4'-[(4'-thio)phenylethynyl]-1'-ethynyl]-benzene (TTPEB). These SAMs were characterized after deposition from a tetrahydrofuran solution on polycrystalline gold substrates and after copper evaporation and its subsequent removal by nitric acid. Monolayers were studied via cyclic voltammetry (CV), UV-vis multiwavelength ellipsometry, external reflectance infrared (IR) spectroscopy, and ion scattering spectroscopy (ISS). The results obtained indicate that TTPEB SAMs display the same packing characteristics before and after copper evaporation and removal. However, as shown by IR spectroscopy, the monolayers undergo a reorganization process that involves an increase in tilt angle accompanied by rotation of aromatic rings that results in a decrease in the average molecular twist angle. ISS data suggest that copper diffuses through the monolayer after copper evaporation, a result that is significant for applications of this molecule in molecular electronic devices.  相似文献   

9.
One application of octadecyltrichlorosilane (OTS) self‐assembled monolayers (SAMs) is its use as thin film resists. In this work, we demonstrated that OTS SAMs can be reliable resists for organo‐metallic chemical vapor deposition (OMCVD) grown gold nanoparticles (Au NPs). In optical sensing applications based on Au NPs, one candidate system consists of patterned OTS SAMs and precisely grown OMCVD Au NPs for achieving a high sensitivity. As an initial step, the OTS SAMs need to perfectly resist the OMCVD Au NP growth. Hence the optimized formation of the OTS SAMs affected by different assembly times and baking temperatures was studied by contact angle, ellipsometry, XPS, SEM, and atomic force microscopy (AFM). To demonstrate the ability of the OTS SAMs to resist OMCVD Au NP growth, the OMCVD process was carried out on two sets of samples: OTS SAMs fabricated under optimized conditions on one set and the other set without OTS SAMs. High‐resolution XPS, RBS, SEM, and ultraviolet‐visible (UV‐Vis) spectroscopy were applied to study the growth of Au NPs on the samples with and without OTS SAM resists. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Three oligothiophene dithiols with different numbers of thiophene rings (3, 6 or 9) have been synthesized and characterized. The X‐ray single crystal structures of terthiophene 2 and sexithiophene 5 are reported herein to show the exact molecular lengths, and to explain the difference between their UV‐visible spectra arising from the different packing modes. These dithiols with different chain lengths were then treated with 2‐dodecanethiol‐protected active gold nanoparticles (Au‐NPs) by means of in situ thiol‐to‐thiol ligand exchange in the presence of 1 μm gap Au electrodes. Thus the molecular junctions composed of self‐assembled films were prepared, in which oligothiophene dithiol‐bridged Au‐NPs were attached to two electrodes by means of Au? S bonded contacts. The morphologies and current–voltage (IV) characteristics of these films were studied by SEM and AFM approaches, which suggested that the thickness of the films (3–4 layers) varied within the size of one isolated Au‐NP and typical distance‐dependent semiconductor properties could be observed. Temperature dependent IV measurements for these molecular junctions were performed in which the films served as active elements in the temperature range 6–300 K; classical Arrhenius plots and subsequent linear fits were carried out to give the activation energies (ΔE) of devices. Furthermore, preliminary studies on the photoresponsive properties of these devices were explored at 80, 160, and 300 K, respectively. Physical and photochemical mechanisms were used to explain the possible photocurrent generation processes. To the best of our knowledge, this is the first report in which oligothiophene dithiols act as bridging units to link Au‐NPs, and also the first report about functionalized Au‐NPs exhibiting photoresponse properties in the solid state.  相似文献   

11.
采用电化学和接触角实验方法研究了硒代胱氨酸自组装膜修饰金电极(SeCys SAMs/Au)和十六烷基三甲基溴化铵(CTAB)-硒代胱氨酸自组装复合膜修饰金电极(CTAB-SeCys SAMs/Au)的特性. 探讨了细胞色素c(Cyt c)在SeCys SAMs/Au电极和CTAB-SeCys SAMs/Au电极上的电化学行为. 实验证明SeCys可促进Cyt c在电极上的氧化还原反应, 加入CTAB后其与SeCys之间的协同作用可在Cyt c与电极之间形成一个开放的通道, 促进作用更加明显, 且在一定浓度范围内, 随CTAB浓度(1×10-5-1×10-4 mol·L-1)的增大, Cyt c在CTAB-SeCys SAMs/Au电极上的氧化还原电流增大, 在接近临界胶束浓度处出现极大值. 在CTAB-SeCys SAMs/Au电极上Cyt c产生一对氧化还原峰, 其峰电位分别为0.305和0.235 V, 其电化学过程受扩散控制. 光谱实验证实SeCys对Cyt c电化学过程的促进作用是由于SeCys与Cyt c中赖氨酸残基的结合.  相似文献   

12.
Polyaddition of various diisothiocyanates and dithiols was achieved with triethylamine in dimethylformamide at 25 °C for 12 h under nitrogen, and then the corresponding polydithiourethanes (PDTUs) were obtained with high yield and molecular weight without depending on the monomer structures, although the dithiol monomer of the low nucleophilicity was unsuitable for polyaddition in this system. The chemical and physical properties of the obtained PDTUs such as solvent solubility, glass transition temperature, thermal stability, transparency, refractive index, and tensile strength, were analyzed in detail by gel permeation chromatography, nuclear magnetic resonance, Fourier transform infrared–attenuated total reflection, ultraviolet–visible, differential scanning calorimetry, thermogravimetric analysis, and tensile testing measurements. These results proved that PDTUs and their cast films having the aliphatic diisothiocyanate and dithiol moieties exhibited excellent chemical and physical properties compared to that of the aromatic PDTUs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2255–2262  相似文献   

13.
Endogenous vicinal‐dithiol‐containing proteins (VDPs) that have two thiol groups close to each other in space play a significant importance in maintaining the cellular redox microenvironment. Approaches to identify VDPs mainly rely on monitoring the different concentration of monothiol and total thiol groups or on indirect labeling of vicinal thiols by using p‐aminophenylarsenoxide ( PAO ). Our previous work has reported the direct labeling of VDPs with a highly selective receptor PAO analogue, which could realize fluorescence detection of VDPs directly in living cells. Herein, we developed a conjugated approach to expand detectable tags to nitrobenzoxadiazole (NBD), fluorescein, naphthalimide, and biotin for the synthesis of a series of probes. Different linkers have also been introduced toward conjugation of VTA2 with these functional tags. These synthesized flexible probes with various features will offer new tools for the potential identification and visualization of vicinal dithiols existing in different regions of VDPs in living cells. These probes are convenient tools for proteomics studies of various disease‐related VDPs and for the discovery of new drug targets.  相似文献   

14.
Nanoscopic tunnel junctions were formed by contacting Au-, Pt-, or Ag-coated atomic force microscopy (AFM) tips to self-assembled monolayers (SAMs) of alkanethiol or alkanedithiol molecules on polycrystalline Au, Pt, or Ag substrates. Current-voltage traces exhibited sigmoidal behavior and an exponential attenuation with molecular length, characteristic of nonresonant tunneling. The length-dependent decay parameter, beta, was found to be approximately 1.1 per carbon atom (C(-1)) or 0.88 A(-)(1) and was independent of applied bias (over a voltage range of +/-1.5 V) and electrode work function. In contrast, the contact resistance, R(0), extrapolated from resistance versus molecular length plots showed a notable decrease with both applied bias and increasing electrode work function. The doubly bound alkanedithiol junctions were observed to have a contact resistance approximately 1 to 2 orders of magnitude lower than the singly bound alkanethiol junctions. However, both alkanethiol and dithiol junctions exhibited the same length dependence (beta value). The resistance versus length data were also used to calculate transmission values for each type of contact (e.g., Au-S-C, Au/CH(3), etc.) and the transmission per C-C bond (T(C)(-)()(C)).  相似文献   

15.
Nonionic Fluorosurfactant Zonyl FSN self-assembly on Au(111) is investigated with scanning tunneling microscopy under ambient conditions. STM reveals that the FSN forms SAMs on Au(l11) with very large domain size and almost no defects. A (mean square root of 3 x mean square root of 3)R3 degree arrangement of the FSN SAM on Au(111) is observed. The SAMs show excellent chemical stability and last for at least a month in atmospheric conditions. The structure and stability of the FSN SAMs are compared with those of alkanethiols SAMs. It is expected that FSN may serve as a new kind of molecule to form SAMs for surface modification, which would benefit wider applications for various purposes.  相似文献   

16.
We investigate the structure of nonionic fluorosurfactant zonyl FSN self-assembled monolayers on Au(111) and Au(100) in 0.05 M H(2)SO(4) as a function of the electrode potential by electrochemical scanning tunneling microscopy (ECSTM). On Au(111), a (3(1/2) × 3(1/2))R30° arrangement of the FSN SAMs is observed, which remains unchanged in the potential range where the redox reaction of FSN molecules does not occur. On Au(100), some parallel corrugations of the FSN SAMs are observed, which originate from the smaller distance and the repulsive interaction between FSN molecules to make the FSN molecules deviate from the bridging sites, and ECSTM reveals a potential-induced structural transition of the FSN SAMs. The experimental observations are rationalized by the effect of the intermolecular interaction. The smaller distance between molecules on Au(100) results in the repulsive force, which increases the probability of structural change induced by external factors (i.e., the electrode potential). The appropriate distance and interactions of FSN molecules account for the stable structure of FSN SAMs on Au(111). Surface crystallography may influence the intermolecular interaction through changing the molecular arrangements of the SAMs. The results benefit the molecular-scale understanding of the behavior of the FSN SAMs under electrochemical potential control.  相似文献   

17.
We have investigated the reaction pathways involved in the unseeded electroless deposition of copper on self-assembled monolayers (SAMs) adsorbed on Au, using time-of-flight secondary ion mass spectrometry, optical microscopy, and scanning electron microscopy. At 22 degrees C copper deposits on both -CH3 and -COOH terminated SAMs. No copper deposition is observed on -OH terminated SAMs because the hydroxyl terminal groups react with formaldehyde in the plating solution, forming an acetal which prevents Cu deposition. At higher deposition temperatures (45 degrees C), no Cu is observed to deposit on -CH3 terminated SAMs because Cu2+ ions are not stabilized on the SAM surface. Copper complexes are still able to form with the -COOH terminal group at 45 degrees C, and so copper continues to be deposited on -COOH terminated SAMs. Copper also penetrates through -CH3 and -COOH terminated SAMs to the Au/S interface, suggesting that soft deposition techniques do not prevent the penetration of low-to-moderate reactivity metals through organic films.  相似文献   

18.
This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases and studied the quality of the resulting SAMs on gold. We found that the optimal conditions to reproducibly form dense, high-quality monolayers are 9-15% triethylamine (Et(3)N) in THF. The deprotection base tetrabutylammonium hydroxide (Bu(4)NOH) leads to less dense SAMs and the incorporation of Bu(4)N into the monolayer. Furthermore, our results show the importance of the equilibrium concentrations of (di)thiolate in solution on the quality of the SAM. To demonstrate the relevance of these results for molecular electronics applications, large-area molecular junctions were fabricated using no base, Et(3)N, and Bu(4)NOH. The magnitude of the current-densities in these devices is highly dependent on the base. A value of β=0.15 ?(-1) for the exponential decay of the current-density of OPEs of varying length formed using Et(3)N was obtained.  相似文献   

19.
A series of biphenyl-derived dithiol (BDDT) compounds with terminal acetyl-protected sulfur groups and different structural arrangements of both phenyl rings have been synthesized and fully characterized. The different arrangements were achieved by introducing hydrocarbon substituents in the 2 and 2' positions of the biphenyl backbone. The presented model compounds enable the investigation of the correlation between the intramolecular conformation and other physical properties of interest, like, e.g., molecular assembly or electronic transport properties. Here, the ability of these model compounds to form self-assembled monolayers (SAMs) on Au(111) and Ag(111) is investigated in details. The deprotection of the target molecules was performed in situ using either NH4OH or triethylamine (TEA) deprotection agent. The fabricated films were characterized by synchrotron-based high-resolution photoelectron spectroscopy and near-edge absorption fine structure spectroscopy. Whereas the deprotection by NH4OH was found to result in the formation of multilayer films, the deprotection by TEA allowed the preparation of densely packed BDDT SAMs with a noticeably higher orientational order and smaller molecular inclination on Ag than on Au. Introduction of the alkyl bridge between the individual rings of the biphenyl backbone did not lead to a noticeable change in the structure and packing density of the BDDT SAMs as long as the molecule had a planar conformation in the respective SAM. The deviation from this conformation resulted in the deterioration of the film quality and a decrease of the orientational order.  相似文献   

20.
An effective approach was presented for the synthesis of co‐cyclic(aromatic aliphatic disulfide) oligomers by catalytic oxidation of aromatic and aliphatic dithiols with oxygen in the presence of a copper‐amine catalyst. The aromatic dithiols can be 4,4′‐oxybis(benzenethiol), 4,4′‐diphenyl dithiol, 4,4′‐diphenylsulfone dithiol. The aliphatic dithiols can be 1,2‐ethanedithiol, 2,3‐butanedithiol, 1,6‐hexane dithiol. The co‐cyclic(aromatic aliphatic disulfide) oligomers were characterized by gradient HPLC, MALDI‐TOF‐MS, GPC, 1H‐NMR, TGA, and DSC techniques. The glass transition temperatures of these co‐cyclics ranged from ?11.3 to 56.6°C. In general, these co‐cyclic(aromatic aliphatic disulfide) oligomers are soluble in common organic solvents, such as CHCl3, THF, DMF, DMAc. These co‐cyclic oligomers readily underwent free radical ring‐opening polymerization in the melt at 180°C, producing linear, tough and high molecular weight poly(aromatic aliphatic disulfide)s. The glass transition temperatures of these polymers ranged from ?3.7 to 107.8°C that are higher than those of corresponding co‐cyclics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号