首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The study of ecological systems has generated deep interest in exploring the complexity of chaotic food chains. The role of chaos in ecosystems is not entirely understood. One approach to have a better comprehension of ecological chaos is by analyzing it in mathematical models of basic food chains. In this article it is considered a classical chaotic food chain model from the literature. We use the theory of symbolic dynamics to study the topological entropy and the parameter space ordering of kneading sequences associated with one-dimensional maps that reproduce significant aspects of the model dynamics. The topological entropy allows us to distinguish different chaotic states in some realistic system parameter region. Another numerical invariant is introduced in order to characterize isentropic dynamics. Studying a set of maps with the same topological entropy, we exhibit numerical results about the relation between the second topological invariant and each of the control parameters in consideration. This work provides an illustration of how our understanding of ecological models can be enhanced by the theory of symbolic dynamics.  相似文献   

2.
The present work introduces an analysis framework to comprehend the dynamics of a 3D plasma model, which has been proposed to describe the pellet injection in tokamaks. The analysis of the system reveals the existence of a complex transition from transient chaos to steady periodic behavior. Additionally, without adding any kind of forcing term or controllers, we demonstrate that the system can be changed to become a multi-stable model by injecting more power input. In this regard, we observe that increasing the power input can fluctuate the numerical solution of the system from coexisting symmetric chaotic attractors to the coexistence of infinitely many quasi-periodic attractors. Besides that, complexity analyses based on Sample entropy are conducted, and they show that boosting power input spreads the trajectory to occupy a larger range in the phase space, thus enhancing the time series to be more complex and random. Therefore, our analysis could be important to further understand the dynamics of such models, and it can demonstrate the possibility of applying this system for generating pseudorandom sequences.  相似文献   

3.
This paper reports a simple parallel chaotic circuit with only four circuit elements: a capacitor, an inductor, a thermistor, and a linear negative resistor. The proposed system was analyzed with MATLAB R2018 through some numerical methods, such as largest Lyapunov exponent spectrum (LLE), phase diagram, Poincaré map, dynamic map, and time-domain waveform. The results revealed 11 kinds of chaotic attractors, 4 kinds of periodic attractors, and some attractive characteristics (such as coexistence attractors and transient transition behaviors). In addition, spectral entropy and sample entropy are adopted to analyze the phenomenon of coexisting attractors. The theoretical analysis and numerical simulation demonstrate that the system has rich dynamic characteristics.  相似文献   

4.
A simple three-dimensional time-reversible system of ODEs with quadratic nonlinearities is considered in a recent paper by Sprott (2014). The author finds in this system, that has no equilibria, the coexistence of a strange attractor and invariant tori. The goal of this letter is to justify theoretically the existence of infinite invariant tori and chaotic attractors. For this purpose we embed the original system in a one-parameter family of reversible systems. This allows to demonstrate the presence of a Hopf-zero bifurcation that implies the birth of an elliptic periodic orbit. Thus, the application of the KAM theory guarantees the existence of an extremely complex dynamics with periodic, quasiperiodic and chaotic motions. Our theoretical study is complemented with some numerical results. Several bifurcation diagrams make clear the rich dynamics organized around a so-called noose bifurcation where, among other scenarios, cascades of period-doubling bifurcations also originate chaotic attractors. Moreover, a cross section and other numerical simulations are also presented to illustrate the KAM dynamics exhibited by this system.  相似文献   

5.
6.
We study estimators for dynamical quantities such as the topological entropy and the topological pressure which are based on numerical computations on periodic orbits. For the particular case of the Hénon family for some parameter ranges we find a reasonable convergence of the entropy, the pressure, and Birkhoff averages of test functions. However, pointing out possible pitfalls of such an analysis, we show that the evaluation by means of saddle orbits alone can be misleading if, for example, chaotic saddles and attractors coexist.  相似文献   

7.
In the study of nonlinear physical systems, one encounters apparently random or chaotic behavior, although the systems may be completely deterministic. Applying techniques from symbolic dynamics to maps of the interval, we compute two measures of chaotic behavior commonly employed in dynamical systems theory: the topological and metric entropies. For the quadratic logistic equation, we find that the metric entropy converges very slowly in comparison to maps which are strictly hyperbolic. The effects of finite precision arithmetric and external noise on chaotic behavior are characterized with the symbolic dynamics entropies. Finally, we discuss the relationship of these measures of chaos to algorithmic complexity, and use algorithmic information theory as a framework to discuss the construction of models for chaotic dynamics.  相似文献   

8.
Motivated by the practical consideration of the measurement of chaotic signals in experiments or the transmission of these signals through a physical medium, we investigate the effect of filtering on chaotic symbolic dynamics. We focus on the linear, time-invariant filters that are used frequently in many applications, and on the two quantities characterizing chaotic symbolic dynamics: topological entropy and bit-error rate. Theoretical consideration suggests that the topological entropy is invariant under filtering. Since computation of this entropy requires that the generating partition for defining the symbolic dynamics be known, in practical situations the computed entropy may change as a filtering parameter is changed. We find, through numerical computations and experiments with a chaotic electronic circuit, that with reasonable care the computed or measured entropy values can be preserved for a wide range of the filtering parameter.  相似文献   

9.
We present evidence for chaos and generalised multistability in a mesoscopic model of the electroencephalogram (EEG). Two limit cycle attractors and one chaotic attractor were found to coexist in a two-dimensional plane of the ten-dimensional volume of initial conditions. The chaotic attractor was found to have a moderate value of the largest Lyapunov exponent (3.4 s−1 base e) with an associated Kaplan-Yorke (Lyapunov) dimension of 2.086. There are two different limit cycles appearing in conjunction with this particular chaotic attractor: one multiperiodic low amplitude limit cycle whose largest spectral peak is within the alpha band (8-13 Hz) of the EEG; and another multiperiodic large-amplitude limit cycle which may correspond to epilepsy. The cause of the coexistence of these structures is explained with a one-parameter bifurcation analysis. Each attractor has a basin of differing complexity: the large-amplitude limit cycle has a basin relatively uncomplicated in its structure while the small-amplitude limit cycle and chaotic attractor each have much more finely structured basins of attraction, but none of the basin boundaries appear to be fractal. The basins of attraction for the chaotic and small-amplitude limit cycle dynamics apparently reside within each other. We briefly discuss the implications of these findings in the context of theoretical attempts to understand the dynamics of brain function and behaviour.  相似文献   

10.
杨科利 《物理学报》2016,65(10):100501-100501
本文研究了耦合不连续系统的同步转换过程中的动力学行为, 发现由混沌非同步到混沌同步的转换过程中特殊的多吸引子共存现象. 通过计算耦合不连续系统的同步序参量和最大李雅普诺夫指数随耦合强度的变化, 发现了较复杂的同步转换过程: 临界耦合强度之后出现周期非同步态(周期性窗口); 分析了系统周期态的迭代轨道,发现其具有两类不同的迭代轨道: 对称周期轨道和非对称周期轨道, 这两类周期吸引子和同步吸引子同时存在, 系统表现出对初值敏感的多吸引子共存现象. 分析表明, 耦合不连续系统中的周期轨道是由于局部动力学的不连续特性和耦合动力学相互作用的结果. 最后, 对耦合不连续系统的同步转换过程进行了详细的分析, 结果表明其同步呈现出较复杂的转换过程.  相似文献   

11.
12.
Guojun Peng  Yaolin Jiang 《Physica A》2010,389(19):4140-4148
The object of this paper is to reveal the relation between dynamics of the fractional system and its dimension defined as a sum of the orders of all involved derivatives. We take the fractional Lorenz system as example and regard one or three of its orders as bifurcation parameters. In this framework, we compute the corresponding bifurcation diagrams via an optimal Poincaré section technique developed by us and find there exist two routes to chaos when its dimension increases from some values to 3. One is the process of cascaded period-doubling bifurcations and the other is a crisis (boundary crisis) which occurs in the evolution of chaotic transient behavior. We would like to point out that our investigation is the first to find out that a fractional differential equations (FDEs) system can evolve into chaos by the crisis. Furthermore, we observe rich dynamical phenomena in these processes, such as two-stage cascaded period-doubling bifurcations, chaotic transients, and the transition from coexistence of three attractors to mono-existence of a chaotic attractor. These are new and interesting findings for FDEs systems which, to our knowledge, have not been described before.  相似文献   

13.
Kramers' 1940 paper and its successive elaborations have extensively explored the transition rate between two stable situations, that is, in the language of system dynamics, the transition between the basins of attraction of two stable fixed point attractors. In a nonequilibrium system some of the above conditions may be violated, either because one of the two fixed points is unstable, as in the case of transient phenomena, or because both fixed points are unstable, as in the case of heteroclinic chaos, or because the attractors are more complex than fixed points, as in a chaotic dynamics where two or more strange attractors coexist. Furthermore, there is recent experimental evidence of space-time complexity consisting in the alternate or simultaneous oscillation of many modes, each one with its own (possibly chaotic) dynamics. In all the above cases, coexistence of many alternative paths implies a choice, either due to noise or self-triggered by the same interacting degrees of freedom. A review of the above phenomena in the case of nonequilibrium optical systems is here presented, with the aim of stimulating theoretical investigation on these novel rate processes.  相似文献   

14.
Based on a numerical solution of the equations of the nonstationary nonlinear theory, we study chaotic self-oscillation regimes in a backward-wave oscillator. For “weak” chaos, arising via a period-doubling cascade of self-modulation for moderate values of the normalized-length parameter, and for developed chaos, which corresponds to large values of this parameter, we present the temporal dependences of the output-signal amplitude, the phase portraits, and the statistical parameters of the dynamics. It is shown that developed chaos is characterized by the presence of more than one positive Lyapunov exponent (hyperchaos). We also present estimates of the Kolmogorov–Sinai entropy, the Lyapunov dimension, and the correlation dimension obtained from the Grassberger–Procaccia algorithm. The results confirm that a finite-dimensional strange attractor is responsible for the chaotic regimes in a backward-wave oscillator.  相似文献   

15.
《Physics letters. A》2019,383(27):125854
We propose an entropy measure for the analysis of chaotic attractors through recurrence networks which are un-weighted and un-directed complex networks constructed from time series of dynamical systems using specific criteria. We show that the proposed measure converges to a constant value with increase in the number of data points on the attractor (or the number of nodes on the network) and the embedding dimension used for the construction of the network, and clearly distinguishes between the recurrence network from chaotic time series and white noise. Since the measure is characteristic to the network topology, it can be used to quantify the information loss associated with the structural change of a chaotic attractor in terms of the difference in the link density of the corresponding recurrence networks. We also indicate some practical applications of the proposed measure in the recurrence analysis of chaotic attractors as well as the relevance of the proposed measure in the context of the general theory of complex networks.  相似文献   

16.
In Satake's generalized resource budget model of ecology, which was modified from Isagi's resource budget model, Satake and Iwasa illustrated, by computing the positive Lyapunov exponent, that if the depletion coefficient is greater than one, then the system is chaotic. However, a positive Lyapunov exponent implies only sensitivity in Devaney's chaos. Therefore, this work presents mathematical viewpoints and numerical analysis on Satake's generalized resource budget model to rigorously prove that the generalized resource budget model is chaotic in Devaney's sense by using the snapback repeller theory and the topological entropy theory. Moreover, this work also investigates that there is a significant difference between the behaviors of positive odd depletion coefficients and positive even depletion coefficients under numerical computations.  相似文献   

17.
In a previous study, air sampling using vortex air samplers combined with species-specific amplification of pathogen DNA was carried out over two years in four or five locations in the Salinas Valley of California. The resulting time series data for the abundance of pathogen DNA trapped per day displayed complex dynamics with features of both deterministic (chaotic) and stochastic uncertainty. Methods of nonlinear time series analysis developed for the reconstruction of low dimensional attractors provided new insights into the complexity of pathogen abundance data. In particular, the analyses suggested that the length of time series data that it is practical or cost-effective to collect may limit the ability to definitively classify the uncertainty in the data. Over the two years of the study, five location/year combinations were classified as having stochastic linear dynamics and four were not. Calculation of entropy values for either the number of pathogen DNA copies or for a binary string indicating whether the pathogen abundance data were increasing revealed (1) some robust differences in the dynamics between seasons that were not obvious in the time series data themselves and (2) that the series were almost all at their theoretical maximum entropy value when considered from the simple perspective of whether instantaneous change along the sequence was positive.  相似文献   

18.
This Letter presents a new three-dimensional autonomous system with four quadratic terms. The system with five equilibrium points has complex chaotic dynamics behaviors. It can generate many different single chaotic attractors and double coexisting chaotic attractors over a large range of parameters. We observe that these chaotic attractors were rarely reported in previous work. The complex dynamical behaviors of the system are further investigated by means of phase portraits, Lyapunov exponents spectrum, Lyapunov dimension, dissipativeness of system, bifurcation diagram and Poincaré map. The physical circuit experimental results of the chaotic attractors show agreement with numerical simulations. More importantly, the analysis of frequency spectrum shows that the novel system has a broad frequency bandwidth, which is very desirable for engineering applications such as secure communications.  相似文献   

19.
We show that one-dimensional topological objects (kinks) are natural degrees of freedom for an antiferromagnetic Ising model on a triangular lattice. Its ground states and the coexistence of spin ordering with an extensive zero-temperature entropy can easily be understood in terms of kinks forming a hard-sphere liquid. Using this picture we explain effects of quantum spin dynamics on that frustrated model, which we also study numerically.  相似文献   

20.
Based on our previous works and Lyapunov stability theory, this paper studies the generation and synchronization of N-scroll chaotic and hyperchaotic attractors in fourth-order systems. A fourth-order circuit, by introducing additional breakpoints in the modified Chua oscillator, is implemented for the study of generation and synchronization of N-scroll chaotic attractors.This confirms the consistency of theoretical calculation, numerical simulation and circuit experiment.Furthermore,we give a refined and extended study of generating and synchronizing N-scroll hyperchaotic attractors in the fourth-order MCK system and report the new theoretical result, which is verified by computer simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号