首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thioamides quench tryptophan and tyrosine fluorescence in a distance-dependent manner and thus can be used to monitor the binding of thioamide-containing peptides to proteins. Since thioamide analogs of the natural amino acids can be synthetically incorporated into peptides, they can function as minimally-perturbing probes of protein/peptide interactions.  相似文献   

2.
Designing a potential protein–ligand pair is pivotal, not only to track the protein structure dynamics, but also to assist in an atomistic understanding of drug delivery. Herein, the potential of a small model thioamide probe being used to study albumin proteins is reported. By monitoring the Förster resonance energy transfer (FRET) dynamics with the help of fluorescence spectroscopic techniques, a twofold enhancement in the FRET efficiency of 2-thiopyridone (2TPY), relative to that of its amide analogue, is observed. Molecular dynamics simulations depict the relative position of the free energy minimum to be quite stable in the case of 2TPY through noncovalent interactions with sulfur, which help to enhance the FRET efficiency. Finally, its application is shown by pairing thiouracils with protein. It is found that the site-selective sulfur atom substitution approach and noncovalent interactions with sulfur can substantially enhance the FRET efficiency, which could be a potential avenue to explore in the design of FRET probes to study the structure and dynamics of biomolecules.  相似文献   

3.
Metal induced nucleic acid folding has been extensively studied with ribozymes, DNAzymes, tRNA and riboswitches. These RNA/DNA molecules usually have a high content of double-stranded regions to support a rigid scaffold. On the other hand, such rigid structural features are not available for many in vitro selected or rationally designed DNA aptamers; they adopt flexible random coil structures in the absence of target molecules. Upon target binding, these aptamers adaptively fold into a compact structure with a reduced end-to-end distance, making fluorescence resonance energy transfer (FRET) a popular signaling mechanism. However, nonspecific folding induced by mono- or divalent metal ions can also reduce the end-to-end distance and thus lead to false positive results. In this study we used a FRET pair labeled Hg(II) binding DNA and monitored metal-induced folding in the presence of various cations. While nonspecific electrostatically mediated folding can be very significant, at each tested salt condition, Hg(II) induced folding was still observed with a similar sensitivity. We also studied the biophysical meaning of the acceptor/donor fluorescence ratio that allowed us to explain the experimental observations. Potential solutions for this ionic strength problem have been discussed. For example, probes designed to signal the formation of double-stranded DNA showed a lower dependency on ionic strength.  相似文献   

4.
Posttranslational modifications (PTMs) are important in the regulation of protein function, trafficking, localization, and marking for degradation. This work describes the development of peptide activity/affinity-based probes for the discovery of proteins that recognize novel acyl-based PTMs on lysine residues in the proteome. The probes contain surrogates of ϵ-N-acyllysine by introduction of either hydrazide or thioamide functionalities to circumvent hydrolysis of the modification during the experiments. In addition to the modified PTMs, the developed chemotypes were analyzed with respect to the effect of peptide sequence. The photo cross-linking conditions and subsequent functionalization of the covalent adducts were systematically optimized by applying fluorophore labeling and gel electrophoresis (in-gel fluorescence measurements). Finally, selected probes, containing the ϵ-N-glutaryllysine and ϵ-N-myristoyllysine analogues, were successfully applied for the enrichment of native, endogenous proteins from cell lysate, recapitulating the expected interactions of SIRT5 and SIRT2, respectively. Interestingly, the latter mentioned was able to pull down two different splice variants of SIRT2, which has not been achieved with a covalent probe before. Based on this elaborate proof-of-concept study, we expect that the technology will have broad future applications for pairing of novel PTMs with the proteins that target them in the cell.  相似文献   

5.
Thioamide modifications of the peptide backbone are used to perturb secondary structure, to inhibit proteolysis, as photoswitches, and as spectroscopic labels. Thus far, their incorporation has been confined to single peptides synthesized on solid phase. We have generated thioamides in C-terminal thioesters or N-terminal Cys fragments and examined their compatibility with native chemical ligation conditions. Most sequence variants can be coupled in good yields with either TCEP or DTT as the reductant, though some byproducts are observed with prolonged TCEP incubations. Furthermore, we find that thioamides are compatible with thiazolidine protection of an N-terminal Cys, so that multiple ligations can be used to construct larger proteins. Since the acid-lability of the thioamide prohibits on-resin thioester synthesis using Boc chemistry, we devised a method for the synthesis of thioamide peptides with a masked C-terminal thioester that is revealed in situ. Finally, we have shown that thioamidous peptides can be coupled to expressed protein fragments to generate large proteins with backbone thioamide labels by synthesizing labeled versions of the amyloid protein α-synuclein for protein folding studies. In a proof-of-principle experiment, we demonstrated that quenching of fluorescence by thioamides can be used to track conformational changes during aggregation of labeled α-synuclein.  相似文献   

6.
We described the effect of fluorophore distance from the silver island films (SIFs) on the metal-enhanced fluorescence (MEF) from two newly developed long-chain nitrobenzoxadiazole derivatives (NBD-C16 and NBD-C18). The well-established Langmuir-Blodgett technique is used to deposit the fluorophores at defined distances from the SIFs surface, and an inert amphiphilic stearic acid is used to control the distance. NBD probes deposited directly on the SIFs surface show the highest metal-enhanced fluorescence of approximately 32-fold, and both of the probes that were studied show a consistent decrease in metal-enhanced fluorescence when increasing the distance from the fluorophore to the SIFs surface. The lowest fluorescence enhancement of approximately 4-fold is observed for the probes located 90 nm from the SIFs surface. Additionally, we also have noticed the shortest fluorescence lifetimes for the NBD probes deposited directly onto the SIFs surface, and the lifetimes are consistently increased when increasing the distances between the fluorophore and SIFs surfaces. These contrasting spectral changes, enhanced fluorescence, and decreased fluorescence lifetimes are in accordance with an increase in the rate of radiative decay for fluorophores near the silver particles. The present study provides significant information on the effect of fluorophore distance on the metal-enhanced fluorescence phenomenon.  相似文献   

7.
In recent years, there has been a massive effort to develop molecular probes with optical modes of action. Probes generally produce detectable signals based on changes in fluorescence properties. Here, we demonstrate the potential of self-immolative molecular adaptors as a platform for Turn-On probes based on the FRET technique. The probe is equipped with identical fluorophore pairs or a fluorophore/quencher FRET pair and a triggering substrate. Upon reaction of the analyte of interest with the triggering substrate, the self-immolative adaptor spontaneously releases the two dye molecules to break off the FRET effect. As a result, a new measurable fluorescent signal is generated. The fluorescence obtained can be used to quantify the analyte. The modular structure of the probe design will allow the preparation of various chemical probes based on the FRET activation technique.  相似文献   

8.
The efficiency of fluorescence resonance energy transfer (FRET) between two chromophores positioned at opposite ends of DNA base pair domains has been investigated. The base pair domain serves as a helical scaffold which defines both the distance between chromophores and the dihedral angle between their electronic transition dipole moments, each incremental base pair increasing the distance and stepping the dihedral angle. Fluorescence quantum yields and lifetimes have been determined for both the donor and acceptor chromophores. The experimental data are found to be in excellent accord with an oriented dipole model, rather than with the averaged dipole model conventionally assumed for FRET.  相似文献   

9.
Dual-excitation ratiometric fluorescent probes allow the measurement of fluorescence intensities at two excitation wavelengths, which should provide a built-in correction for environmental effects. However, most of the small-molecule dual-excitation ratiometric probes that have been reported thus far have shown rather limited separation between the excitation wavelengths (20-70 nm) and/or a very small molar absorption coefficient at one of the excitation wavelengths. These shortcomings can lead to cross-excitation and thus to errors in the measurement of fluorescence intensities and ratios. Herein, we report a FRET-based molecular strategy for the construction of small-molecule dual-excitation ratiometric probes in which the donor and acceptor excitation bands exhibit large separations between the excitation wavelengths and comparable excitation intensities, which is highly desirable for determining the fluorescence intensities and signal ratios with high accuracy. Based on this strategy, we created a coumarin-rhodamine FRET platform that was then employed to develop the first class of FRET-based dual-excitation ratiometric pH probes that have two well-resolved excitation bands (excitation separations>160 nm) and comparable excitation intensities. In addition, these pH probes may be considered as in a kind of "secured ratioing mode". As a further application of these pH probes, the dual-excitation ratiometric pH probes were transformed into the first examples of photocaged dual-excitation ratiometric pH probes to improve the spatiotemporal resolution. It is expected that the modular nature of our FRET-based molecular strategy should render it applicable to other small-molecule dual-dye energy-transfer systems based on diverse fluorescent dyes for the development of a wide range of dual-excitation ratiometric probes with outstanding spectral features, including large separations between the excitation wavelengths and comparable excitation intensities.  相似文献   

10.
Two-photon fluorescence microscopy (TPFM) provides key advantages over conventional fluorescence imaging techniques, namely, increased penetration depth, lower tissue autofluorescence and self-absorption, and reduced photodamage and photobleaching and therefore is particularly useful for imaging deep tissues and animals. Enzyme-detecting, small molecule probes provide powerful alternatives over conventional fluorescent protein (FP)-based methods in bioimaging, primarily due to their favorable photophysical properties, cell permeability, and chemical tractability. In this article, we report the first fluorogenic, small molecule reporter system (Y2/Y1) capable of imaging endogenous phosphatase activities in both live mammalian cells and Drosophila brains. The one- and two-photon excited photophysical properties of the system were thoroughly investigated, thus confirming the system was indeed a suitable Turn-ON fluorescence pair for TPFM. To our knowledge, this is the first enzyme reporting two-photon fluorescence bioimaging system which was designed exclusively from a centrosymmetric dye possessing desirable two-photon properties. By conjugation of our reporter system to different cell-penetrating peptides (CPPs), we were able to achieve organelle- and tumor cell-specific imaging of phosphatase activities with good spatial and temporal resolution. The diffusion problem typically associated with most small molecule imaging probes was effectively abrogated. We further demonstrated this novel two-photon system could be used for imaging endogenous phosphatase activities in Drosophila brains with a detection depth of >100 μm.  相似文献   

11.
This paper describes the design of novel base-discriminating fluorescent (BDF) nucleobases and their application to single nucleotide polymorphism (SNP) typing. We devised novel BDF nucleosides, (Py)U and (Py)C, which contain a pyrenecarboxamide chromophore connected by a propargyl linker. The fluorescence spectrum of the duplex containing a (Py)U/A base pair showed a strong emission at 397 nm on 327 nm excitation. In contrast, the fluorescence of duplexes containing (Py)U/N base pairs (N = C, G, or T) was considerably weaker. The proposed structure of the duplex containing a matched (Py)U/A base pair suggests that the high polarity near the pyrenecarboxamide group is responsible for the strong A-selective fluorescence emission. Moreover, the fluorescence of the duplex containing a (Py)U/A base pair was not quenched by a flanking C/G base pair. The fluorescence properties are quite different from previous BDF nucleobases, where fluorescence is quenchable by flanking C/G base pairs. The duplex containing the C derivative, (Py)C, selectively emitted fluorescence when the base opposite (Py)C was G. The drastic change of fluorescence intensity by the nature of the complementary base is extremely useful for SNP typing. (Py)U- and (Py)C-containing oligodeoxynucleotides acted as effective reporter probes for homogeneous SNP typing of DNA samples containing c-Ha-ras and BRCA2 SNP sites.  相似文献   

12.
We have monitored the reaction dynamics of the DNA hybridization process on a liquid/solid interface at the single-molecule level by using a hairpin-type molecular beacon DNA probe. Fluorescence images of single DNA probes were recorded by using total internal reflection fluorescence microscopy. The fluorescence signal of single DNA probes during the hybridization to individual complementary DNA probes was monitored over time. Among 400 molecular beacon DNA probes that we tracked, 349 molecular beacons (87.5 %) were hybridized quickly and showed an abrupt fluorescence increase, while 51 probes (12.5 %) reacted slowly, resulting in a gradual fluorescence increase. This ratio stayed about the same when varying the concentrations of cDNA in MB hybridization on the liquid/surface interface. Statistical data of the 51 single-molecule hybridization images showed that there was a multistep hybridization process. Our results also showed that photostability for the dye molecules associated with the double-stranded hybrids was better than that for those with the single-stranded molecular beacon DNA probes. Our results demonstrate the ability to obtain a better understanding of DNA hybridization processes using single-molecule techniques, which will improve biosensor and biochip development where surface-immobilized molecular beacon DNA probes provide unique advantages in signal transduction.  相似文献   

13.
设计、合成了一类新型谷胱甘肽(glutathione,GSH)和凋亡酶-3(Caspase-3)响应的环肽分子荧光探针.该类探针主要由能量共振转移(FRET)分子荧光对、Caspase-3特异性识别多肽序列和GSH响应双硫键组成,分为不含穿膜肽序列(CP)和包含穿膜肽序列(cp CP)的两种不同环肽分子荧光探针.2种环肽分子荧光探针均能实现在GSH和Caspase-3同时存在情况下的精确成像,同时具有良好的响应性、特异性和高信噪比.该类环肽分子荧光探针在细胞培养环境中具有良好的稳定性和生物相容性.利用该探针,可以实现对星形孢菌素(STS)诱发的细胞凋亡进行实时、原位的成像监测,并对抗肿瘤药物阿霉素(DOX)和顺铂(cisplatin)诱导的细胞凋亡进行成像.这种具有多重响应并能用于精确成像的分子荧光探针将极大地促进疾病的精确诊断.  相似文献   

14.
《中国化学快报》2022,33(11):4943-4947
Cascading reactions in fluorophores accompanied by the replacement of different fluorescence wavelengths can be used to develop luminescent materials and reactive fluorescent probes. Based on multiple signal channels, the selectivity of probes can be improved and the range of response to guest molecule recognition can be expanded. By regulating the position, number, and activity of active sites in fluorophores, fluorescent probes that successively react with thiol and amino groups in cysteine (Cys), homocysteine (Hcy) have been developed, which can only react with the thiol group of GSH. In this paper, we report the first probe capable of cascading nucleophilic substitution reaction with the thiol group and amino group of GSH at a single reaction site, and showed the dual-color recognition of GSH, which improved the selectivity of GSH also was an extension of GSH probes. The probe Rho-DEA was based on a TICS fluorophore, and the intramolecular cascade nucleophilic substitution reaction occurs with Cys/Hcy. The thiol substitution of the first step reaction with Cys/Hcy was quenched due to intersystem crossing to triplet state, so GSH can be selectively recognized from the fluorescence signal. Rho-DEA has the ability of mitochondrial localization, and finally realized in situ dual-color fluorescence recognition of GSH in mitochondria.  相似文献   

15.
To realize a fast, easy-operation and precise way using fluorescence probes to quantify analytes is a goal to facilitate detection, especially in situ. Herein, we are reporting an approach which can be generally employed for the differentiation and quantitation of analytes through fluorescence chromaticity and luminosity. Seven representative fluorescent probes, targeting pH, cysteine, hydrogen sulfide, hydrogen peroxide, palladium and hydrazine, were synthesized and tested. Without utilizing costly instrumentations, portable devices were employed to collect data of photographs from the fluorescence samples in responses to different analytes. Subsequently, the photographic images were digitally processed to generate calibration curves between chromaticity/luminosity verse concentrations after mapping to the CIE 1931 xyY standard color space. Good linear calibration curves and quantitative analysis of unknown samples with low errors through the spectral technology demonstrated the reliability of this method. Thus, we showed the analytical method with a simple and on-site constructible/portable device which is promising for applications in more fluorescence probes.  相似文献   

16.
构建了一种基于框架核酸的高通量生物检测芯片.利用超微量移液自动化平台,将包含框架核酸探针的液滴按照预设命令固定至生物芯片微阵列上,在探针捕获核酸靶标后利用集成的基因芯片扫描仪对芯片进行成像,通过分析荧光强度定量化分析靶标浓度.结果表明,此框架核酸芯片能够实现框架核酸探针的高通量制备, 24 h即可制备具有15万个点的微阵列,且点间距离的相对偏差W≤10%、荧光强度的变异系数CV=3.30%,具有较高的稳定性,远高于国家标准.此外,该芯片具备高灵敏度、可寻址的高通量生物分析能力,对核酸靶标的检测限可达100 pmol/L.随着多种探针技术的发展,生物检测微阵列技术在高通量生物分析领域展示出巨大的潜力.  相似文献   

17.
Song KC  Kim JS  Park SM  Chung KC  Ahn S  Chang SK 《Organic letters》2006,8(16):3413-3416
[reaction: see text] A new thioamide derivative of 8-hydroxyquinoline-benzothiazole was prepared, and its fluorogenic chemodosimetric behaviors toward transition-metal ions were investigated. The thioamide derivative showed highly Hg2+-selective fluorescence enhancing properties (167-fold) in 30% aqueous acetonitrile solution. The selective and sensitive signaling behaviors were found to originate from the Hg2+ ion induced transformation of the very weak fluorescent thioamide derivative into a highly fluorescent amide analogue.  相似文献   

18.
Peptide nucleic acid (PNA) oligomers can be used as probes in pre-gel hybridization experiments, as an alternative to Southern hybridization. In this technique, the PNA probe is hybridized to a cyanine-5 labeled DNA sample denatured at low ionic strength, and the mixture is directly injected for size separation into a capillary electrophoresis (CE) system equipped with laser-induced fluorescence (LIF) detector. The neutral backbone of PNA allows hybridization to occur at low ionic strength and assures an efficient CE separation of the PNA/DNA hybrids from both double-stranded and single-stranded DNA. We have used as a model system the cystic fibrosis R553X and R1162X single-base mutations and we have assessed the influence of various factors, such as temperature and denaturants concentration on DNA/PNA hybrid stability in order to achieve the high specificity required for a single base pair discrimination.  相似文献   

19.
Pyrene-labeled oligodeoxyribonucleotide probes were shown to be suitable for the detection of point mutations. Reagents based on homochiral 2,4-dihydroxybutyramides were used to introduce pyrene residues at the 3"- and 5"- ends of oligonucleotide pairs. The oligonucleotide pair forms a tandem complex with a complementary target, giving rise to an excimer signal (max 470—490 nm) in the fluorescence spectra when the pyrene residues come into close proximity. The maximum ratio of the intensity of the excimer signal to the monomer signal (max 380—400 nm) is attained when (S)-N-(1-pyrenylmethyl)-3,3-dimethyl-2,4-dihydroxybutyramide is used to introduce the pyrene residue. The excimer fluorescence completely disappears with an increase in the distance between the pyrene residues (upon the introduction of an additional nucleotide in the target) or in the presence of a mismatch near the contact site of the probes.  相似文献   

20.
Infrared spectroscopy is a common method for monitoring biomolecular structures but suffers from spectral congestion. Non-natural vibrational probes provide a way to regain structural specificity because they provide a unique vibrational signature and can be incorporated into proteins or other biomolecules at specific locations. A popular probe is the nitrile group because its frequency is sensitive to the electrostatics of its environment. In this work, we show that pairs of nitrile groups can be used to directly probe distances and angles in dual labeled molecules. By labeling model DNA oligomers with pairs of nitrile tags, we demonstrate that the vibrational coupling between two nitrile groups is strong enough that Fourier transform infrared (FTIR) spectra can be used to probe relative nitrile distances >4.5 A. Our approach is similar in spirit to monitoring structures with fluorescence resonance energy transfer (FRET) using a pair of fluorescent labels or a pair of spin labels in electron spin resonance spectroscopy. The small sizes of nitrile groups make especially valuable probes of sterically confined regions like the inner cores of large biomolecules where other spectroscopic probes do not fit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号