首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The review describes chemical transformations of multifunctional compounds (amino acids and peptides, amino alcohols, amino thiols, hydroxy acids, oxo acids, oxo alcohols, compounds containing simultaneously three or more different groups etc.) by using step-wise or one-step modification or protection of functional groups. Some chemical aspects of mixed derivatization performed for improving the physical-chemical properties and mass spectral characteristics are discussed. Application of mixed derivatization to qualitative and quantitative analysis of various multifunctional compounds mainly in biological fluids and other matrices by gas chromatography/mass spectrometry in electron ionization, chemical ionization, negative-ion chemical ionization and selected ion monitoring modes is considered.  相似文献   

2.
This is the first of two reviews devoted to derivatization approaches for "soft" ionization mass spectrometry (FAB, MALDI, ESI, APCI) and deals, in particular, with small molecules. The principles of the main "soft" ionization mass spectrometric methods as well as the reasons for derivatizing small molecules are briefly described. Derivatization methods for modification of amines, carboxylic acids, amino acids, alcohols, carbonyl compounds, monosaccharides, thiols, unsaturated and aromatic compounds etc. to improve their ionizability and to enhance structure information content are discussed. The use of "fixed"-charge bearing derivatization reagents is especially emphasized. Chemical aspects of derivatization and "soft" ionization mass spectrometric properties of derivatives are considered.  相似文献   

3.
The review describes various derivatization approaches employed for the investigation of synthetic polymers by mild ionization mass spectrometry (fast atom and ion bombardment, matrix-assisted laser desorption/ionization, electrospray/ionization). The potentials of chemical methods for modification of end- and side-chain functional groups without the decomposition of molecules are demonstrated. Methods of the preliminary chemical degradation of polymer molecules for the investigation of their microstructure are considered. The possibilities of the chemical modification of polymer surfaces for the identification and quantitative determination of functionalized fragments are shown.  相似文献   

4.
The fundamentals of chemical derivatization techniques as applied to the quantitative analysis of ultrathin surface layers of various organic compounds via functional groups were considered. Using X-ray photoelectron spectroscopy as an example of the most informative and almost nondestructive technique for characterization of thin layers, the general requirements imposed on the selective chemical reactions and possible artifacts were discussed. The validity of the technique was illustrated by the examples of analyses of surface layers of organic polymers with known concentrations of surface functional groups, plasma-modified polymers, and carbon fibers. It was noted that selective chemical reactions are successfully used in other techniques for studying material surfaces. The surface analysis of organic materials via functional groups can be performed with a simultaneous increase in the sensitivity of the corresponding spectral technique.  相似文献   

5.
Liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is one of the most prominent analytical techniques owing to its inherent selectivity and sensitivity. In LC/ESI-MS/MS, chemical derivatization is often used to enhance the detection sensitivity. Derivatization improves the chromatographic separation, and enhances the mass spectrometric ionization efficiency and MS/MS detectability. In this review, an overview of the derivatization reagents which have been applied to LC/ESI-MS/MS is presented, focusing on the applications to low molecular weight compounds.  相似文献   

6.
Derivatization of neutral steroids for increasing sensitivity in liquid chromatography/negative atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) has been examined. Under APCI conditions, gas-phase electrons are provided by the corona discharge and captured by electron-affinitive compounds. In negative APCI-MS, therefore, ultrahigh sensitivity can be obtained by tagging neutral steroids, whose ionization efficiencies are low in the conventional APCI-MS, with electron-capturing moieties, such as a nitro group. We synthesized various boronic acid and hydrazine derivatives having electron-capturing moieties as derivatization reagents for 1,2-diol compounds and oxosteroids, respectively. Among reagents examined, those having the 2-nitro-4-trifluoromethylphenyl moiety were most effective in increasing sensitivity. That is, the detection responses of the derivatives with these reagents were increased by several to more than 200-fold over intact steroids, where limits of detection were some picograms. The developed derivatization procedures were applied to analyses of small amounts of steroids in human plasma and gave satisfactory results.  相似文献   

7.
Electrospray ionization (ESI) of denatured proteins produces a broad distribution of multiply-charged ions leading to multiple peaks in the mass spectrum. We investigated changes in the positive-mode ESI charge state distribution produced by several chemical modifications of denatured proteins. Capping carboxylic acid groups with neutral functional groups yields little change in charge state distribution compared with unmodified proteins. The results indicate that carboxyl groups do not play a significant role in the positive charging of denatured proteins in ESI. The modification of proteins with additional basic sites or fixed positive charges generates substantially higher charge states, providing evidence that the number of ionizable sites, rather than molecular size and shape, determines ESI charging for denatured proteins. Fixed charge modification also significantly reduces the number of protons acquired by a protein, in that the charge state envelope is not increased by the full number of fixed charges appended. This result demonstrates that Coulombic repulsion between positive charges plays a significant role in determining charge state distribution by affecting the gas-phase basicity of ionizable sites. Addition of fixed-charge moieties to a protein is a useful approach for shifting protein charge state distributions to higher charge states, and with further work, it may help limit the distribution of protein ions to fewer charge states.  相似文献   

8.
Derivatization procedures using 1-phenyl-3-methyl-5-pyrazolone (PMP) and 2-aminonaphthalene trisulfone (ANTS) were selected among a number of well known methods for labelling carbohydrates. PMP derivatives were selected owing to our laboratory's previous high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) experience with these, whereas the ANTS-labelled compounds were prepared for fluorophore-assisted carbohydrate electrophoresis (FACE) separation. ANTS-oligosaccharide standards were characterized to study their ionization patterns. Reversed-phase and normal-phase HPLC systems were coupled on-line with ESI-MS. Each necessitated its own mobile phase system which, in turn, imposed some important changes in the ionization conditions used and/or on the ionization patterns and spectra obtained. Following characterization of the intact glycoprotein ovalbumin with ESI-MS, its glycans were detached using the enzyme PNGase-F. The glycans were subjected to PMP and ANTS derivatization. It was very difficult to separate ANTS derivatives by reversed-phase HPLC owing to lack of retention, and normal-phase HPLC offered reasonable retention with limited separation. PMP compounds overall yielded better normal- and reversed-phase separations and improved sensitivity over the ANTS-labelled sugars, for which negative mode ESI had to be used. The combination of ESI of intact ovalbumin and ESI of PMP-glycans gave rise to the detection of over 20 different glycoforms, excluding the possible presence of structural isomers for each sugar composition detected.  相似文献   

9.
The review is devoted to alkylation (arylation) as a widely employed derivatization procedure for the protection of OH (carboxylic acids, phosphoric acids, sulfonic acids, alcohols, polyols, phenols, enols), SH (thiols) and NH (amines, amides) groups in order to increase volatility, to improve the chromatographic properties and, if possible, mass spectral properties of derivatives. Chemical aspects of derivatization and various alkylation (arylation) reagents and reaction procedures are described. Specific mass spectral (electron ionization, chemical ionization) features of derivatives helpful in identification, structure elucidation, profiling and quantitative determination of the above-mentioned polar compounds by coupled gas chromatography or high-performance liquid chromatography are discussed. Some common analytical applications of the procedures in organic chemistry, clinical chemistry, environmental chemistry etc. are briefly summarized.  相似文献   

10.
The present review is devoted to acylation as a widely employed derivatization procedure for protection of OH (alcohols, polyols, phenols, enols), SH (thiols) and NH (amines, amides) groups in order to increase volatility, improve chromatographic properties and, if possible, improve mass spectral properties of derivatives. Chemical aspects of derivatization and various acylating agents are characterized. Mass spectral [electron ionization (EI), chemical ionization (CI) and negative-ion (NI) CI] properties of derivatives that are helpful in identification, structure elucidation and quantitative determination of the analyzed compounds are discussed. Some recent analytical applications of the procedure in synthetic organic chemistry, clinical chemistry, environmental chemistry etc. are summarized.  相似文献   

11.
Derivatization using 3-pyridylcarbinol coupled with liquid chromatography electrospray ionization tandem mass spectrometry (LC/MS/MS) was used to characterize a novel Phase II metabolite of the nephrotoxic agricultural fungicide, N-(3,5-dichlorophenyl)succinimide (NDPS). A glucuronide conjugate of N-(3,5-dichlorophenyl)-2-hydroxysuccinamic acid (2-NDHSA) was identified in the urine from a rat dosed with [14C]NDPS. However, 2-NDHSA contains an aliphatic hydroxyl group and a carboxylic acid group, both of which are potential sites for glucuronidation. Mass spectrometry alone was unable to distinguish between these possibilities. Since the position of glucuronidation may be important in the mechanism of NDPS-induced nephrotoxicity, chemical derivatization in conjunction with mass spectrometry was used to characterize the glucuronide. The 2-NDHSA glucuronide conjugate was isolated from rat urine, derivatized with 3-pyridylcarbinol, and the derivatized metabolite was then analyzed by LC/MS/MS. Two known NDPS metabolites, 2-NDHSA and N-(3,5-dichlorophenyl)succinamic acid (NDPSA), were also isolated from rat urine and derivatized similarly. 3-Pyridinylcarbinol reacted rapidly with the carboxylic acid groups and formation of the picolinyl esters increased the ionization potential under positive ion conditions. The urinary glucuronide of 2-NDHSA was identified as an alcohol-linked glucuronide by examination of the molecular ions and the collision-induced dissociation (CID) product ion spectra of the derivatized products. When used in combination with mass spectrometry, derivatization of carboxylic acids with 3-pyridylcarbinol provided useful mass fragmentations and is a rapid way to obtain structural information about the position of glucuronidation of NDPS metabolites.  相似文献   

12.
A library consisting of 3766 MS(n) spectra of 1743 compounds, including 3126 MS2 spectra acquired mainly using ion trap (IT) and triple-quadrupole (QqQ) instruments, was composed of numerous collections/sources. Ionization techniques were mainly electrospray ionization and also atmospheric pressure chemical ionization and chemical ionization. The library was tested for the performance in identification of unknowns, and in this context this work is believed to be the largest of all known tests of product-ion mass spectral libraries. The MS2 spectra of the same compounds from different collections were in turn divided into spectra of 'unknown' and reference compounds. For each particular compound, library searches were performed resulting in selection by taking into account the best matches for each spectral collection/source. Within each collection/source, replicate MS2 spectra differed in the collision energy used. Overall, there were up to 950 search results giving the best match factors and their ranks in corresponding hit lists. In general, the correct answers were obtained as the 1st rank in up to 60% of the search results when retrieved with (on average) 2.2 'unknown' and 6.2 reference replicates per compound. With two or more replicates of both 'unknown' and reference spectra (the average numbers of replicates were 4.0 and 7.8, respectively), the fraction of correct answers in the 1st rank increased to 77%. This value is close to the performance of established electron ionization mass spectra libraries (up to 79%) found by other workers. The hypothesis that MS2 spectra better match reference spectra acquired using the same type of tandem mass spectrometer (IT or QqQ) was neither strongly proved nor rejected here. The present work shows that MS2 spectral libraries containing sufficiently numerous different entries for each compound are sufficiently efficient for identification of unknowns and suitable for use with different tandem mass spectrometers.  相似文献   

13.
Challenges and pitfalls in the application of diethyldithiocarbamate derivatization for LC analysis of cisplatin and oxaliplatin, as well as the suitability of this method for different biological matrices with implications for use in routine practice have been identified. The LC of platinum drugs presents a significant challenge. They are polar compounds with poor retention on reverse phase packings. Cisplatin also exhibits poor absorption in UV and ionization in mass spectrometry. Therefore, we developed and optimized a derivatization approach for the LC analysis of total platinum in plasma, plasma ultrafiltrate, peritoneal fluid, and urine. Derivatization in urine proved to be difficult due to the complexity of the matrix, and extended testing was required. Our results highlight the important issues affecting the efficiency, reliability, and suitability of platinum drug derivatization. Although precolumn derivatization is less selective than its postcolumn counterpart, the application of precolumn derivatization is a simple, rapid, and universal approach for the determination of platinum drugs by HPLC. One of its major advantages is that it allows a more affordable analysis using UV detection without the need for additional high-end instrumentation such as a MS detector.  相似文献   

14.
The collision-induced dissociations of the even-electron [M + H](+) and/or [M - H](-) ions of 121 model compounds (mainly small aromatic compounds with one to three functional groups) ionized by electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) have been studied using an ion trap instrument, and the results are compared with the literature data. While some functional groups (such as COOH, COOCH(3), SO(3)H in the negative ion mode, or NO(2) in both the positive and negative ion modes) generally promote the loss of neutrals that are characteristic as well as specific, other functional groups (such as COOH in the positive ion mode) give rise to the loss of neutrals that are characteristic, but not specific. Finally, functional groups such as OH and NH(2) in aromatic compounds do not lead to the loss of a neutral that reflects the presence of these substituents. In general, the dissociation of [M + H](+) and [M - H](-) ions generated from aliphatic compounds or compounds containing an aliphatic moiety obeys the even-electron rule (loss of a molecule), but deviations from this rule (loss of a radical) are sometimes observed for aromatic compounds, in particular for nitroaromatic compounds. Thermochemical data and ab initio calculations at the CBS-QB3 level of theory provide an explanation for these exceptions. When comparing the dissociation behaviour of the even-electron [M + H](+) and/or [M - H](-) ions (generated by ESI or APCI) with that of the corresponding odd-electron [M](+) ions (generated by electron ionization, EI), three cases may be distinguished: (1) the dissociation of the two ionic species differs completely; (2) the dissociation involves the loss of a common neutral, yielding product ions differing in mass by one Da, or (3) the dissociations lead to a common product ion.  相似文献   

15.
Most of the precursors and/or degradation products related to the Chemical Weapons Convention (CWC) are polar. Identification of these molecules in environmental samples provides clues regarding the alleged usage and/or synthesis of the parent toxic chemicals. Such polar compounds need to be derivatized in order to analyze them by gas chromatography–mass spectrometry (GC–MS). In this study, we developed a new derivatizing reagent, para-tolyl isocyanate (PTI), for derivatization of polar CWC-related compounds. The PTI reagent selectively derivatizes the –OH and/or?SH functional groups with high efficiency, but does not react with carboxylic acid (?COOH) or phosphonic acid (?(O)P(OH)2) groups. The PTI derivatives of dialkyl aminoethanols, dialkyl aminoethanol-N-oxides, and 3-quinuclidinol were successfully eluted through GC, and their electron ionization (EI) mass spectra were distinct and provided the structure information by which the isomeric compounds can be easily distinguished. We also calculated the GC-retention index values that can be used for further confirmation of the target compounds. All the studied PTI derivatives can be analyzed by EI-MS with direct insertion probe and/or by direct electrospray ionization mass spectrometry (ESI-MS) together with the MS–MS data; both sets of data provide full structure information. The PTI reagent was found to be better in some respects than the conventional bistrimethylsilyl trifluoroacetamide (BSTFA), a trimethyl silylating reagent. The PTI reagent is commercially available, and the PTI derivatives are highly stable for months and are not sensitive to moisture. The applicability of the PTI derivatization for trace-level determination of the target CWC-related polar compounds in environmental matrices and in human plasma samples is also evaluated.
Fig. a
?  相似文献   

16.
LC-MS has become an invaluable technique for trace analysis of polar compounds in aqueous samples of the environment and in water treatment. LC-MS is of particular importance due to the impetus it has provided for research into the occurrence and fate of polar contaminants, and of their even more polar transformation products. Mass spectrometric detection and identification is most widely used in combination with sample preconcentration, chromatographic separation and atmospheric pressure ionization (API). The focus of the first part of this review is directed particularly toward instruments and method development with respect to their applications for detecting emerging contaminants, microorganisms and humic substances (HS). The current status and future perspectives of 1) mass analyzers, 2) ionization techniques to interface liquid chromatography (LC) with mass spectrometry (MS), 3) methods for preconcentration and separation with respect to their application for water analysis are discussed and examples of applications are given. Quadrupole and ion trap mass analyzers with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) are already applied in routine analysis. Time-of-flight (TOF) mass spectrometers are of particular interest for accurate mass measurements for identification of unknowns. For non-polar compounds, different ionization approaches have been described, such as atmospheric pressure photoionization (APPI), electrochemistry with ESI, or electron capture ionization with APCI. In sample preconcentration and separation, solid phase extraction (SPE) with different non-selective sorbent materials and HPLC on reversed-phase materials (RP-HPLC) play the dominant role. In addition, various on-line and miniaturized approaches for sample extraction and sample introduction into the MS have been used. Ion chromatography (IC), size-exclusion chromatography (SEC), and capillary electrophoresis (CE) are alternative separation techniques. Furthermore, the issues of compound identification, matrix effects on quantitation, development of mass spectral libraries and the topic of connecting analysis and toxicity bioassays are addressed.  相似文献   

17.
Derivatization, or chemical structure modification, is often used in bioanalysis performed by liquid chromatography technique in order to enhance detectability or to improve the chromatographic performance for the target analytes. The derivatization process is discussed according to the analytical procedure used to achieve the reaction between the reagent and the target compounds (containing hydroxyl, thiol, amino, carbonyl and carboxyl as the main functional groups involved in derivatization). Important procedures for derivatization used in bioanalysis are in situ or based on extraction processes (liquid–liquid, solid‐phase and related techniques) applied to the biomatrix. In the review, chiral, isotope‐labeling, hydrophobicity‐tailored and post‐column derivatizations are also included, based on representative publications in the literature during the last two decades. Examples of derivatization reagents and brief reaction conditions are included, together with some bioanalytical applications and performances (chromatographic conditions, detection limit, stability and sample biomatrix).  相似文献   

18.
X-ray photoelectron spectroscopy (XPS) and density functional theory are employed to study the electronic structure of octasilsesquioxanes (RSiO1.5)8 with vinyl and phenyl terminal groups. Quantitative compositions determined from the XPS data are close to those estimated by empirical formulas. Narrow spectral lines corresponding to ionization from C1 s core levels indicate similar chemical states of carbon atoms for both compounds. Experimental data are confirmed by close calculated values of effective charges on carbon atoms when polarization functions are included in the basis set and also by small energy ranges of core level electrons. The valence spectral region is interpreted based on the calculated energy values of electronic levels with regard to the density of states and ionization cross-sections.  相似文献   

19.
A facile mass spectrometric kinetic method for quantitative analysis of chiral compounds was developed by integrating mass spectrometry based on chemical derivatization and the spectral shape deformation quantitative theory. Chemical derivatization was employed to introduce diastereomeric environments to the chiral compounds of interest, resulting in different abundance distribution patterns of fragment ions of the derivatization products of enantiomers in mass spectrometry. The quantitative information of the chiral compounds of interest was extracted from complex mass spectral data by an advanced calibration model derived based on the spectral shape deformation quantitative theory. The performance of the proposed method was tested on the quantitative analysis of R‐propranolol in propranolol tablets. Experimental results demonstrated that it could achieve accurate and precise concentration ratio predictions for R‐propranolol with an average relative predictive error (ARPE) of about 4%, considerably better than the corresponding results of the mass spectrometric method based on chemical derivatization and the univariate ratiometric model (ARPE: about 12%). The limit of detection (LOD) and limit of quantification (LOQ) of the proposed method for the concentration ratio of R‐propranolol were estimated to be 1.5% and 6.0%, respectively. The proposed method is complementary to the existing methods designed for the quantification of enantiomers such as the Cooks kinetic method.  相似文献   

20.
Several selenium containing compounds have been derivatized to diethyl selenide using sodium tetraethylborate. The evolved diethyl selenide was detected by gas chromatography interfaced with atomic absorption or mass spectroscopic methods. Derivatization was carried out on the analyte in a sealed vial using an aqueous solution of sodium tetraethylborate (2%) added by means of a syringe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号