首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of ion mobility separation to determine the collision cross-section of a gas-phase ion can provide valuable structural information. The introduction of travelling-wave ion mobility within a quadrupole/time-of-flight mass spectrometer has afforded routine collision cross-section measurements to be performed on a range of ionic species differing in gas-phase size/structure and molecular weight at physiologically relevant concentrations. Herein we discuss the technical advances in the second-generation travelling-wave ion mobility separator, which result in up to a four-fold increase in mobility resolution. This improvement is demonstrated using two reverse peptides (mw 490 Da), small ruthenium-containing anticancer drugs (mw 427 Da), a cisplatin-modified protein (mw 8776 Da) and the noncovalent tetradecameric chaperone complex GroEL (mw 802 kDa). What is also shown are that the collision cross-sections determined using the second-generation mobility separator correlate well with the previous generation and theoretically derived values.  相似文献   

2.
3.
Two organometallic compounds containing zinc and manganese in different ratios are used as single-source precursors for the preparation of various new, bimetallic oxide materials with nanoscaled dimensions. It is shown that the materials synthesis can be performed in the solid-state, the liquid-phase, and even in the gas-phase. The molecular composition of the precursors determines the composition of the resulting materials. In addition, two novel methods for the preparation of highly crystalline metal oxide colloids are presented: The coupling between a gas-phase process and a colloidal approach, and the application of ozone as an oxidant for the transformation of metal carbonyls into oxides in the liquid phase.  相似文献   

4.
The aggregation of methylene blue (MB), rhodamine 6G (R6G), and rhodamine B (RB) in liquid crystalline solution (anisotropic host) was studied using polarised spectroscopy and in a guest–host system. The self-association of the ionic dyes was investigated in molecular sieves of type zeolite-β and SAPO-11 (microporous solid hosts) using diffuse reflectance spectroscopy. The aggregation of the dyes in the aqueous solution (isotropic host) was studied using absorption spectroscopy in the visible region for comparison. Therefore, the influence of host nature in the different phases on the molecular interaction of the guest molecules was investigated and compared. The nature of the interacting pairs in these dyes was discussed using the exciton theory.  相似文献   

5.
With its high strength, high thermal stability, low density, and high electrical resistance, silicon-nitride-based ceramics have been widely used as gate insulating layers, oxidation masks, and passivation layers. Employing SiN nanomaterials in anode applications also improves rate performances and cycling stability of the lithium-ion batteries. However, a fundamental understanding of the SiN synthetic process remains elusive. SiN gas-phase synthesis can be tailored with a comprehensive understanding of the underlying thermodynamics. In comparison to the characterization data available for solid-state SiN materials, high-level theoretical studies on gas-phase materials possessing Si−N bonds and comprehensive investigation of the SiN chemistry, particularly for nanoclusters, are very uncommon. Thus, we performed a theoretical study of Si and SiN alloy acyclic hydrides and polycyclic clusters to predict electronic structures and thermochemistry using quantum chemical calculation and statistical thermodynamics. Electronic properties by way of highest and lowest occupied molecular orbital energy gap and natural bonding orbitals analysis were calculated to explore the influence of elemental composition and geometry on the stability. Our studies provide characteristic data of SiN species for a data-driven approach to map the design space for discovery of novel silicon-nitride-based ceramic materials for advanced electronic and coating applications.  相似文献   

6.
A quantum-chemical computational approach to accurately predict the nuclear magnetic resonance (NMR) properties of 1-alkyl-3-methylimidazolium ionic liquids has been performed by the gauge-including atomic orbitals method at the B3LYP/6-31++G** level using different simulated ionic liquid environments. The first molecular model chosen to describe the ionic liquid system includes the gas-phase optimized structures of ion pairs and separated ions of a series of imidazolium salts containing methyl, butyl, and octyl substituents and PF6-, BF4-, and Br- anions. In addition, a continuum polarizable model of solvation has been applied to predict the effects of the medium polarity on the molecular properties of 1,3-dimethylimidazolium hexafluorophosphate (MmimPF6). Furthermore, the specific acidic and basic solute-solvent interactions have been simulated by a discrete solvation model based on molecular clusters formed by MmimPF6 species and a discrete number of water molecules. The computational prediction of the NMR spectra allows a consistent interpretation of the dispersed experimental evidence in the literature. The following are main contributions of this work: (a) Theoretical results state the presence of a chemical equilibrium between ion-pair aggregates and solvent-separated counterions of 1-alkyl-3-methylimidazolium salts which is tuned by the solvent environment; thus, strong specific (acidic and basic) and nonspecific (polarity and polarizability) solvent interactions are predicted favoring the dissociated ionic species. (b) The calculated 1H and 13C NMR properties of these ionic liquids are revealed as highly dependent on the nature of solute-solvent interactions. Thus, the chemical shift of the hydrogen atom in position two of the imidazolium ring is deviated to high values by the specific interactions with water molecules, whereas nonspecific interaction with water (as a solvent) affects, in the opposite direction, this 1H NMR parameter. (c) Last, current calculations support the presence of hydrogen bonding between counterions, suggesting the importance of this interaction in the properties of the solvent in the 1-alkyl-3-methylimidazolium ionic liquids.  相似文献   

7.
We report herein a combined experimental–computational study on tris‐(2‐hydroxylethyl)methylammonium methylsulfate in water solutions, as a representative ionic liquid of the aqueous‐solution behavior of hydroxylammonium‐based ionic liquids. Relevant thermophysical properties were measured as a function of mixture composition and temperature. Classical molecular dynamics simulations were performed to infer microscopic structural features. The reported results for ionic liquid in water‐rich solutions show that it behaves as isolated non‐interacting ions solvated by water molecules, through well‐defined solvation shells, exerting a disrupting effect on the water hydrogen bonding network. Nevertheless, as ionic liquid concentration increase, interionic association increases, even for diluted water solutions, evolving from the typical behavior of strong electrolytes in solution toward large interacting structures. For ionic‐liquid‐rich mixtures, water exerts a minor disrupting effect on the fluid’s structuring because it occupies regions around each ion (developing water–ion hydrogen bonds) but without significantly weakening anion–cation interactions.  相似文献   

8.

Silica sol-gel matrices and its organically modified analogues that contain aqueous electrolytes, ionic liquids, or other ionic conductors constitute stand-alone solid-state electrochemical cells when hosting electrodes or serve as modifying films on working electrodes in conventional cells. These materials facilitate a wide variety of analytical applications and are employed in various designs of power sources. In this review, analytical applications are the focus. Solid-state cells that serve as gas sensors, including in chromatographic detectors of gas-phase analytes, are described. Sol-gel films that modify working electrodes to perform functions such as hosting electrochemical catalysts and acting as size-exclusion moieties that protect the electrode from passivation by adsorption of macromolecules are discussed with emphasis on pore size, structure, and orientation. Silica sol-gel chemistry has been studied extensively; thus, factors that control its general properties as frameworks for solid-state cells and for thin films on the working electrode are well characterized. Here, recent advances such as the use of dendrimers and of nanoscale beads in conjunction with electrochemically assisted deposition of silica to template pore size and distribution are emphasized. Related topics include replacing aqueous solutions as the internal electrolyte with room-temperature ionic liquids, using the sol-gel as an anchor for functional groups and modifying electrodes with silica-based composites.

  相似文献   

9.
The solid-state kinetics and gas-phase predictions of the 1,4-bis(trimethylsilyl)benzene (TMSB) are visualized by utilizing thermogravimetric and mass spectral data. The statistical analyses and reduced time plots of zero order (F0) and Avrami-Erofeev (A2) nucleation and growth models provides the best fit to experimental data for isothermal evaporation process for TMSB. The activation energy for non-isothermal evaporation processes of TMSB is calculated using isoconversional methods. The molecular structure and energetics of the predicted gas phase molecules and species in chemical vapor deposition process are investigated using semi-empirical quantum chemical calculations.  相似文献   

10.
We have performed dispersion corrected density functional theory calculations to study the proton transfer in the gas-phase and solvent effects on the structural transformation for a series of nitrogen-rich energetic salts. Proton transfer was observed from the cations to anions within all the salts in the gas-phase and resulted into neutral hydrogen-bonding complexes; however, they were stabilized as ionic structures in the liquid state with solvation energies in the range of ?37.72–69.37 kJ/mol. An increment by 4–9 Debye in the dipole moment was found when the salts went from the gas to solution. Moreover, these ionic salts exhibited relatively high densities in the range of 1.63–1.96 g/cm3 desirable for energetic materials. A combination of NH3OH+ to the cation and ?NO2 or ?NF2 group to the anion can improve efficiently the detonation performance. Most of the ammonium, hydroxyammonium, and hydrazinium salts were promising competitive explosives and could be used as potential targets for synthesis.  相似文献   

11.
The solid-state X-ray diffraction, FT-IR and FT-Raman measurements of cynacure have been performed. Optimized molecular structures and normal vibrations of cynacure and 2-(methylthio)aniline have been calculated in the gas phase at the B3LYP/6-311++G** level. Scaling factors that bring computational gas-phase frequencies in closer agreement with the solid-state experimental data have been calculated for each vibration type. The observed IR and Raman bands of cynacure and 2-(methylthio)aniline have been assigned in the frameworks of the calculated mode frequencies as well as the calculated IR and Raman intensities. The assignments of the normal modes of cynacure have been compared with those of the benzene and 2-(methylthio)aniline modes. The effects of the substitution on the benzene vibrational frequencies have been investigated. 2-(Methylthio)aniline and cynacure both have four stable conformers. The calculated ground-state energetics and vibrational spectra of 2-(methylthio)aniline and cynacure suggest the coexistence of their stable conformers at the room temperature.  相似文献   

12.
Electron ionization mass spectrometry was used for the structural characterization of substituted 2-thiazolin-4-one derivatives in the gas phase. The compounds follow common fragmentation pathways, producing ions whose abundances are dependent on the chemical nature of the substituent at position 2. Collision-induced dissociation tandem mass spectrometric experiments, carried out on both molecular ions and fragment ions produced in the source, allowed the elucidation of gas-phase decompositions. The presence of tautomeric forms is suggested for some ionic species. Rapid identification of a primary or secondary amine moiety at position 2 of the thiazoline ring can be achieved by the detection of characteristic fragmentations occurring both in the ion source and under the collision-induced dissociation regime.  相似文献   

13.
14.
Metal-organic frameworks (MOFs) are an emerging class of porous materials with potential applications in a wide variety of fields. The knowledge about the detailed interactions between MOFs and guest molecules is critical for the understanding of their structure-property relationships at working conditions. In this review, recent advances for solid-state NMR studies of host–guest chemistry of MOFs in the application fields of gaseous adsorption, chemical separation, drug delivery, chemical sensor, and heterogeneous catalysis were briefly introduced. The adsorption property and dynamic behavior of adsorbed gases confined inside the MOFs channels were elucidated from variable-temperature (VT) solid-state NMR. Moreover, the detailed mechanism of gas-phase and liquid-phase adsorptive separations on MOFs adsorbents was uncovered on the basis of solid-state NMR measurements. Multi-nuclear 1H, 13C, 15N, and 31P MAS NMR was utilized to explore the interactions between drug molecules and MOFs at the atomic scale to monitor the controlled release process of drugs. Furthermore, the investigation of the interactions between guest molecules and MOFs in the application areas of chemical sensor, toxic chemicals removal, and catalysis using solid-state NMR was briefly discussed as well.  相似文献   

15.
The electronic properties of a single layer (SL) of pentacene molecules are investigated by high-resolution UV photoemission and near-edge X-ray absorption spectroscopy in different configurations of the SL, either standing up on an aromatic self-assembled monolayer or planar on a bare Cu(001) substrate. The weakly interacting pentacene molecules in the standing-up SL present a semiconducting character, and the empty states distribution reflects that of gas-phase pentacene, while the planar pentacene-Cu system shows a metallic interface with redistribution of the empty molecular states. The highest-occupied molecular orbital lineshape in the weakly interacting SL shows a double structure, attributed to two nonequivalent molecules in the ordered configuration.  相似文献   

16.
Ab initio calculations at the HF/6-31G(d) level of theory were performed on a series of thiacalix[4]arenes and calix[6]arenes in presence and in absence of monovalent (Li+, Na+ and Cs+) and divalent cations (Ca2+ and Ba2+) respectively, in order to evaluate their particular bonding properties as host systems towards electrically charged species. NBO, as well as NBO deletion calculations were undertaken to evaluate the energy difference in the circular hydrogen bonding at the lower rim once an ion was placed inside the cavity. Disruption of this H-bonded system is dependent on the position of the ion within the guest and not on its ionic ratio. The basis set superposition error and the NBO deletion energy between the host and guest species were calculated in order to assess the interaction energy between them.  相似文献   

17.
Multiply charged anions (MCAs) represent exotic, highly energetic species in the gas-phase due to their propensity to undergo unimolecular decay via electron loss or ionic fragmentation. There is considerable fundamental interest in these systems since they display novel potential energy surfaces that are characterized by Coulomb barriers. Over recent years, considerable progress has been made in understanding the factors that affect the stability, decay pathways and reactivity of gas-phase MCAs, mainly as a result of the application of electrospray ionization as a generic technique for transferring solution-phase MCAs into the gas-phase for detailed characterization. We review contemporary work in this field, focusing on the factors that control the intrinsic stability of MCAs, both as isolated gas-phase ions, and on their complexation with solvent molecules and counter-ions. While studies of MCAs are primarily of fundamental interest, several classes of important biological ions are commonly observed as MCAs in the gas-phase (e.g. oligonucleotides, sugars). Recent results for biologically relevant ions are emphasised, since a fundamental understanding of the properties of gas-phase MCAs will be highly valuable for developing further analytical methods to study these important systems.  相似文献   

18.
The oxo-functionalization of organic substrates with the aid of metal oxo moieties is of fundamental importance not only in nature but also in academic and industrial research. Nevertheless the corresponding reaction mechanisms remain among the most enigmatic in chemistry and few of them are understood in detail. Recent research efforts have resulted in significantly improved information: in the cases of many oxygenation reactions evidence has been provided for the occurrence radical intermediates, even though the high selectivity observed suggests to a different mechanism. Examples stem from various areas of chemistry and include processes involving molecular metal oxo complexes, gas-phase and matrix-isolated species, metalloenzymes, and solid-state oxide surfaces. This review treats this seemingly wide variety of systems with the aim of providing an overview of common reactivity patterns and principles, as well as open problems.  相似文献   

19.
The extended photooxidation of and secondary organic aerosol (SOA) formation from dodecane (C(12)H(26)) under low-NO(x) conditions, such that RO(2) + HO(2) chemistry dominates the fate of the peroxy radicals, is studied in the Caltech Environmental Chamber based on simultaneous gas and particle-phase measurements. A mechanism simulation indicates that greater than 67% of the initial carbon ends up as fourth and higher generation products after 10 h of reaction, and simulated trends for seven species are supported by gas-phase measurements. A characteristic set of hydroperoxide gas-phase products are formed under these low-NO(x) conditions. Production of semivolatile hydroperoxide species within three generations of chemistry is consistent with observed initial aerosol growth. Continued gas-phase oxidation of these semivolatile species produces multifunctional low volatility compounds. This study elucidates the complex evolution of the gas-phase photooxidation chemistry and subsequent SOA formation through a novel approach comparing molecular level information from a chemical ionization mass spectrometer (CIMS) and high m/z ion fragments from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Combination of these techniques reveals that particle-phase chemistry leading to peroxyhemiacetal formation is the likely mechanism by which these species are incorporated in the particle phase. The current findings are relevant toward understanding atmospheric SOA formation and aging from the "unresolved complex mixture," comprising, in part, long-chain alkanes.  相似文献   

20.
Characterization of glycosaminoglycans poses a challenge for current analytical techniques, as they are highly acidic, polydisperse and heterogeneous compounds. The purpose of this study is the separation and analysis of a partially depolymerized heparin-like glycosaminoglycan by on-line ion-pairing reversed-phase high-performance liquid chromatography/electrospray mass spectrometry. The gas-phase behavior of two synthesized glycosaminoglycans has been investigated. Dibutylamine was found to be the best suited ion-pairing reagents for mass spectrometry analysis. The optimized ion-pairing conditions provide reproducible and easily interpretable electrospray mass spectra in both negative and positive ESI modes. The glycosaminoglycans are detected as a non-covalent complex with amines. In fact, the observed ionic species and their gas-phase dissociation under CID conditions revealed the presence of salt bridge interactions in the gas phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号