首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Nuclear Physics B》1995,436(3):721-745
Some years ago Dray and 't Hooft found the necessary and sufficient conditions to introduce a gravitational shock wave in a particular class of vacuum solutions to Einstein's equations. We extend this work to cover cases where non-vanishing matter fields and a cosmological constant are present. The sources of gravitational waves are massless particles moving along a null surface such as a horizon in the case of black holes. After we discuss the general case we give many explicit examples. Among them are the d-dimensional charged black hole (that includes the 4-dimensional Reissner-Nordström and the d-dimensional Schwarzschild solution as subcases), the 4-dimensional De Sitter and anti-De Sitter spaces (and the Schwarzschild-De Sitter black hole), the 3-dimensional anti-De Sitter black hole, as well as backgrounds with a covariantly constant null Killing vector. We also address the analogous problem for string-inspired gravitational solutions nd give a few examples.  相似文献   

2.
A massless field propagating on spherically symmetric black hole metrics such as the Schwarzschild, Reissner–Nordström and Reissner–Nordström–de Sitter backgrounds is considered. In particular, explicit formulae in terms of transcendental functions for the scattering of massless scalar particles off black holes are derived within a Born approximation. It is shown that the conditions on the existence of the Born integral forbid a straightforward extraction of the quasi normal modes using the Born approximation for the scattering amplitude. Such a method has been used in literature. We suggest a novel, well defined method, to extract the large imaginary part of quasinormal modes via the Coulomb-like phase shift. Furthermore, we compare the numerically evaluated exact scattering amplitude with the Born one to find that the approximation is not very useful for the scattering of massless scalar, electromagnetic as well as gravitational waves from black holes.  相似文献   

3.
We show that the Dirac equation is separable in the circularly symmetric metric in three dimensions and when the background spacetime is de Sitter we find exact solutions to the radial equations. Using these results we show that the de Sitter horizon has a cross section equal to zero for the massless Dirac field, as in the case of the scalar field. Also, using the improved brick wall model we calculate the fermionic entropy associated with the de Sitter horizon and we compare it with some results previously published.  相似文献   

4.
《Nuclear Physics B》1995,434(3):709-735
We find cosmological black hole solutions for spacetimes of arbitrary dimension (greater than three) that are asymptotically de Sitter, and we show that these solutions can be extended to give multi-black hole solutions. We investigate the motion of a charged massive test particle in a five-dimensional extreme Reissner-Nordström de Sitter background. Furthermore we obtain Killing spinors for Reissner-Nordström de Sitter spacetimes. We also find five-dimensional cosmological black hole solutions in an asymptotically anti de Sitter spacetime and we show that these solutions are supersymmetric in the sense that they admit a supercovariantly constant spinor.  相似文献   

5.
We study the black hole solution in Einstein-Maxwell-Gauss-Bonnet (EMGB) gravity theory with a cosmological constant in five dimension. It is a generalization of the Reissner-Nordström-de Sitter (RNdS) or RNAdS (Reissner-Nordström-Anti-de Sitter) black hole solutions (according as the cosmological constant is positive or negative) in the Einstein-Gauss-Bonnet (EGB) theory. We analyze the thermodynamic quantities of EMGB black hole and find a restriction involving the charge and the cosmological constant for the existence of an extremal black hole. Finally, Hawking-Page phase transition has been discussed for the present black hole.  相似文献   

6.
On Orbits and Rays in Schwarzschild- and in Reissner-Nordström-Space We study the spherical symmetric models of Schwarzschild and Reissner-Nordström. Using the theory of elliptic functions and integrals we can represent orbits and rays explicitely. In Reissner-Nordström-Space we find almost-straight and almost-circular types of rays, so the duality of light appears.  相似文献   

7.
Hawking radiation from a black hole can be viewed as quantum tunneling of particles through the event horizon. Using this approach we provide a general framework for studying corrections to the entropy of black holes beyond semiclassical approximations. Applying the properties of exact differentials for three variables to the first law thermodynamics, we study charged rotating black holes and explicitly work out the corrections to entropy and horizon area for the Kerr–Newman and charged rotating BTZ black holes. It is shown that the results for other geometries like the Schwarzschild, Reissner-Nordström and anti-de Sitter–Schwarzschild spacetimes follow easily.  相似文献   

8.
The possibility of converting a Reissner-Nordström black hole into a naked singularity by means of test particle accretion is considered. The dually charged Reissner-Nordström metric describes a black hole only when M2 > Q3 + P2. The test particle equations of motion are shown to allow test particles with arbitrarily large magnetic charge/mass ratios to fall radially into electrically charged black holes. To determine the nature of the final state (black hole or naked singularity) an exact solution of Einstein's equations representing a spherical shell of magnetically charged dust falling into an electrically charged black hole is studied. Naked singularities are never formed so long as the weak energy condition is obeyed by the infalling matter. The differences between the spherical shell model and an infalling point test particle are examined and discussed.  相似文献   

9.
We describe the spherically symmetric steady-state accretion of perfect fluid in the Reissner-Nordström metric. We present analytic solutions for accretion of a fluid with linear equations of state and of the Chaplygin gas. We also show that under reasonable physical conditions, there is no steady-state accretion of a perfect fluid onto a Reissner-Nordström naked singularity. Instead, a static atmosphere of fluid is formed. We discuss a possibility of violation of the third law of black hole thermodynamics for a phantom fluid accretion.  相似文献   

10.
By using the sixth order WKB approximation we calculate for an electromagnetic field propagating in D-dimensional Schwarzschild and Schwarzschild de Sitter (SdS) black holes its quasinormal (QN) frequencies for the fundamental mode and first overtones. We study the dependence of these QN frequencies on the value of the cosmological constant and the spacetime dimension. We also compare with the results for the gravitational perturbations propagating in the same background. Moreover we compute exactly the QN frequencies of the electromagnetic field propagating in D-dimensional massless topological black hole and for the charged D-dimensional Nariai spacetime we calculate exactly the QN frequencies of the coupled electromagnetic and gravitational perturbations.  相似文献   

11.
In this paper, we derive the deformed Hamilton-Jacobi equations from the generalized Klein-Gordon equation and generalized Dirac equation. Then, we study the tunneling rate, Hawking temperature and entropy of the higher-dimensional Reissner-Nordström de Sitter black hole via the deformed Hamilton-Jacobi equation. Our results show that the deformed Hamilton-Jacobi equations for charged scalar particles and charged fermions have the same expressions. Besides, the modified Hawking temperatures and entropy are related to the mass and charge of the black hole, the cosmology constant, the quantum number of emitted particles, and the term of GUP effects β.  相似文献   

12.
The geodesic equations for the general case of diagonal metrics of static, spherically symmetric fields are calculated. The elimination of the proper time variable gives the motion equations for test particles with respect to coordinate time and an account of “gravitational acceleration from the coordinate perspective”. The results are applied to the Schwarzschild metric and to the so-called exponential metric. In an attempt to add an account of “gravitational force from the coordinate perspective”, the special relativistic mass-energy relation is generalized to diagonal metrics involving location dependent and possibly anisotropic light speeds. This move requires a distinction between two aspects of the mass of a test particle (parallel and perpendicular to the field). The obtained force expressions do not reveal “gravitational repulsion” for the Schwarzschild metric and for the exponential metric.  相似文献   

13.
The exact static and spherically symmetric solution of Einstein's field equations for a massive point-particle with a scalar point-charge as source of a massless scalar field is derived in Schwarzschild coordinates. There exists no longer a Schwarzschild horizon. Only at the point-particle metric and scalar field are singular (naked singularity).  相似文献   

14.
Circular orbits of spinning test particles and their stability in Schwarzschild-like backgrounds are investigated. For these space–times the equations of motion admit solutions representing circular orbits with particles spins being constant and normal to the plane of orbits. For the de Sitter background the orbits are always stable with particle velocity and momentum being co-linear along them. The world-line deviation equations for particles of the same spin-to-mass ratios are solved and the resulting deviation vectors are used to study the stability of orbits. It is shown that the orbits are stable against radial perturbations. The general criterion for stability against normal perturbations is obtained. Explicit calculations are performed in the case of the Schwarzschild space–time leading to the conclusion that the orbits are stable.  相似文献   

15.
A.B. Balakin 《Annals of Physics》2008,323(9):2183-2207
We formulate a self-consistent non-minimal five-parameter Einstein-Yang-Mills-Higgs (EYMH) model and analyse it in terms of effective (associated, color and color-acoustic) metrics. We use a formalism of constitutive tensors in order to reformulate master equations for the gauge, scalar and gravitational fields and reconstruct in the algebraic manner the so-called associated metrics for the Yang-Mills field. Using WKB-approximation we find color metrics for the Yang-Mills field and color-acoustic metric for the Higgs field in the framework of five-parameter EYMH model. Based on explicit representation of these effective metrics for the EYMH system with uniaxial symmetry, we consider cosmological applications for Bianchi-I, FLRW and de Sitter models. We focus on the analysis of the obtained expressions for velocities of propagation of longitudinal and transversal color and color-acoustic waves in a (quasi)vacuum interacting with curvature; we show that curvature coupling results in time variations of these velocities. We show, that the effective metrics can be regular or can possess singularities depending on the choice of the parameters of non-minimal coupling in the cosmological models under discussion. We consider a physical interpretation of such singularities in terms of phase velocities of color and color-acoustic waves, using the terms “wave stopping” and “trapped surface”.  相似文献   

16.
Symmetry transformations in a space of D-dimensional vacuum metrics with D?3 commuting Killing vectors are studied. We solve directly the Einstein equations in the Maison formulation under additional assumptions. We show that the Reissner-Nordström solution is related by the symmetry transformation to a particular case of the 5-dimensional Gross-Perry metric and the 5-dimensional plane wave solution is related to the Gross-Perry-Sorkin metric.  相似文献   

17.
We extensively study the exact solutions of the massless Dirac equation in 3D de Sitter spacetime that we published recently. Using the Newman-Penrose formalism, we find exact solutions of the equations of motion for the massless classical fields of spin s= 12,1,2 and to the massive Dirac equation in 4D de Sitter metric. Employing these solutions, we analyze the absorption by the cosmological horizon and de Sitter quasinormal modes. We also comment on the results given by other authors.  相似文献   

18.
In this paper we prove the Penrose inequality for metrics that are small perturbations of the Schwarzschild anti-de Sitter metrics of positive mass. We use the existence of a global foliation by weakly stable constant mean curvature spheres and the monotonicity of the Hawking mass.  相似文献   

19.
The generalized Laplace partial differential equation, describing gravitational fields, is investigated in de Sitter spacetime from several metric approaches—such as the Riemann, Beltrami, Börner-Dürr, and Prasad metrics—and analytical solutions of the derived Riccati radial differential equations are explicitly obtained. All angular differential equations trivially have solutions given by the spherical harmonics and all radial differential equations can be written as Riccati ordinary differential equations, which analytical solutions involve hypergeometric and Bessel functions. In particular, the radial differential equations predict the behavior of the gravitational field in de Sitter and anti-de Sitter spacetimes, and can shed new light on the investigations of quasinormal modes of perturbations of electromagnetic and gravitational fields in black hole neighborhood. The discussion concerning the geometry of de Sitter and anti-de Sitter spacetimes is not complete without mentioning how the wave equation behaves on such a background. It will prove convenient to begin with a discussion of the Laplace equation on hyperbolic space, partly since this is of interest in itself and also because the wave equation can be investigated by means of an analytic continuation from the hyperbolic space. We also solve the Laplace equation associated to the Prasad metric. After introducing the so called internal and external spaces—corresponding to the symmetry groups SO(3,2) and SO(4,1) respectively—we show that both radial differential equations can be led to Riccati ordinary differential equations, which solutions are given in terms of associated Legendre functions. For the Prasad metric with the radius of the universe independent of the parametrization, the internal and external metrics are shown to be of AdS-Schwarzschild-like type, and also the radial field equations arising are shown to be equivalent to Riccati equations whose solutions can be written in terms of generalized Laguerre polynomials and hypergeometric confluent functions.  相似文献   

20.
Based on the hidden conformed symmetry, some authors have proposed a Harrison metric for the Schwarzschild black hole. We give a procedure which can generate a family of Harrison metrics starting from a general set of SL(2, R) vector fields. By analogy with the subtracted geometry of the Kerr black hole, we find a new Harrison metric for the Schwaxzschild case. its conformal generators axe also investigated using the Killing equations in the near-horizon limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号