首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this work, we report a study on the influence of CHx thickness layer on optical properties of CHx/PS/Si structures. The hydrocarbon groups were deposited by plasma of methane–argon mixture.The properties of these structures are investigated by photoluminescence (PL), reflection and spectral response measurements from where a different behavior depending on CHx layer thickness has been observed.The entire total reflection spectrum is modulated by Fabry–Pérot fringes that are a result of thin film interference. As the CHx layer thickness increases, the amplitude of the interferences decreases and a positive shift of the maximum peak is observed.The PL spectra from CHx/PS samples with two CHx layer thicknesses show more intense luminescence than that observed from PS sample and the existence of an optimum thickness CHx that gives the maximum PL intensity. The spectral response spectra show the presence of an intense peak at 450 nm. Finally, the results point out the importance of CHx coating in optoelectronic applications.  相似文献   

2.
This paper reports the effect of surface topography of titanium dioxide films on short-circuit current density of photoelectrochemical solar cell of ITO/TiO2/PVC-LiCLO4/graphite. The films were deposited onto ITO-covered glass substrate by screen-printing technique. The films were tempered at 300 °C, 350 °C, 400 °C, 450 °C and 500 °C for 30 min to burn out the organic parts and to achieve the films with porous structure. The surface roughness of the films were studied using scanning electron microscope (SEM). Current–voltage relationship of the devices were characterized in dark at room temperature and under illumination of 100 mW cm−2 light from tungsten halogen lamp at 50 °C. The device utilising the TiO2 film annealed at 400 °C produces the highest short-circuit current density and open-circuit voltage as it posses the smoothest surface topography with the electrolyte. The short-circuit current density and open-circuit voltage of the devices increase with the decreasing grain size of the TiO2 films. The short-circuit current density and open-circuit voltage are 0.6 μA/cm2 and 109 mV respectively.  相似文献   

3.
The Ag2O–TiO2–SiO2 glasses were prepared by Ag+/Na+ ion-exchange method from Na2O–TiO2–SiO2 glasses at 380–450 °C below their glass transition temperatures (Tg), and their electrical conductivities were investigated as functions of TiO2 content and the ion-exchange ratio (Ag/(Ag+Na)). In a series of glasses 20R2xTiO2·(80−x)SiO2 with x=10, 20, 30 and 40 in mol%, the electrical conductivities at 200 °C of the fully ion-exchanged glasses of R=Ag were in the order of 10−5 or 10−4 S cm−1 and were 1 or 2 orders of magnitude higher than those of the initial glasses of R=Na. The glass of x=30 exhibited the highest increase of conductivity from 3.8×10−7 to 1.3×10−4 S cm−1 at 200 °C by Ag+/Na+ ion exchange among them. When the ion-exchange ratio was changed in 20R2O·30TiO2·50SiO2 system, the electrical conductivity at 200 °C exhibited a minimum value of 7.6×10−8 S cm−1 around Ag/(Ag+Na)=0.3 and increased steeply in the region of Ag/(Ag+Na)=0.5–1.0. When the ion-exchange temperature was changed from 450 to 400 °C, the conductivity of the ion-exchanged glass of x=30 decreased. The infrared spectroscopy measurement revealed that the ion-exchange temperature of 450 °C induced a structural change in the glass of x=30. The Tg of the fully ion-exchanged glass of x=30 was 498 °C. It was suggested that the incorporated silver ions changed the average coordination number of titanium ions to form higher ion-conducting pathway and resulted in high conductivity in the titanosilicate glasses.  相似文献   

4.
The work reports on the fabrication of a p–n heterojunction structure comprised of polyaniline (PANI) and TiO2 nanoparticles. PANI was deposited by plasma enhanced polymerization on TiO2 thin film substrates. The structural and the crystalline properties demonstrated the coherence and the substantive interaction of the plasma polymerized PANI molecules with the TiO2 nanoparticle thin film. The UV–Vis studies of PANI/TiO2 thin film supported the internalization of PANI with TiO2 nanoparticles due to ππ* transition of the phenyl rings with the lone pair electrons () of the nitrogen atom present in the PANI molecules. The IV characteristics of the PANI/TiO2 heterojunction structure were obtained in the forward and the reverse biased at applied voltage ranging from −1 V to +1 V with a scan rate of 2 mV/s. The proficient current in the PANI/TiO2 heterojunction structure was attributed to the well penetration of PANI molecules into the pores of the TiO2 nanoparticle thin film. The IV characteristics ensured an efficient charge movement at the junction of PANI/TiO2 interface and thus, behaved as a typical ohmic system.  相似文献   

5.
Highly strained quantum cascade laser (QCL) and quantum well infrared photodetector (QWIPs) structures based on InxGa(1−x)As−InyAl(1−y)As (x>0.8,y<0.3) layers have been grown by molecular beam epitaxy. Conditions of exact stoichiometric growth were used at a temperature of 420°C to produce structures that are suitable for both emission and detection in the 2–5 μm mid-infrared regime. High structural integrity, as assessed by double crystal X-ray diffraction, room temperature photoluminescence and electrical characteristics were observed. Strong room temperature intersubband absorption in highly tensile strained and strain-compensated In0.84Ga0.16As/AlAs/In0.52Al0.48As double barrier quantum wells grown on InP substrates is demonstrated. Γ–Γ intersubband transitions have been observed across a wide range of the mid-infrared spectrum (2–7 μm) in three structures of differing In0.84Ga0.16As well width (30, 45, and 80 Å). We demonstrate short-wavelength IR, intersubband operation in both detection and emission for application in QC and QWIP structures. By pushing the InGaAs–InAlAs system to its ultimate limit, we have obtained the highest band offsets that are theoretically possible in this system both for the Γ–Γ bands and the Γ–X bands, thereby opening up the way for both high power and high efficiency coupled with short-wavelength operation at room temperature. The versatility of this material system and technique in covering a wide range of the infrared spectrum is thus demonstrated.  相似文献   

6.
Thin AsSe1.5−xTex films with 0x<1.5 have been prepared by a thermal vacuum evaporation technique onto quartz and glass substrates kept at room temperature (300 K). The optical constants, the refractive index, n, and the absorption index, k, of the films were determined for the investigated compositions of different thickness values (100–300 nm) using spectrophotometric measurements of the transmittance, T, and the reflectance, R, at normal incidence in the spectral range 400–2500 nm. The obtained values of both n and k were found to be independent of the film thickness within the above mentioned thickness range. The estimated indirect and direct optical energy gap decreased as tellurium content increased in the parent sample AsSe1.5. The values of dispersion energy, Ed, and lattice dielectric constant, L, of the system have been determined and correlated with the type and amount of chemical bonds and the relative proportion of the constituent elements in the examined compositions.  相似文献   

7.
Lead-free multi-component ceramics (Bi1−xyNa0.925−xyLi0.075)0.5BaxSryTiO3 have been prepared by an ordinary sintering technique and their structure and electrical properties have been studied. All the ceramics can be well-sintered at 1100 °C. X-ray diffraction patterns shows that Li+, Ba2+ and Sr2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) is formed at 0.04 < x < 0.08. As compared to pure Bi0.5Na0.5TiO3 ceramic, the coercive field EC of the ceramics decreases greatly and the remanent polarization Pr of the ceramics increases significantly after the formation of the multi-component solid solution. Due to the MPB, lower EC and higher Pr, the piezoelectricity of the ceramics is greatly improved. For the ceramics with the compositions near the MPB (x = 0.04–0.08 and y = 0.02–0.04), piezoelectric coefficient d33 = 133–193 pC/N and planar electromechanical coupling factor kP = 16.2–32.1%. The depolarization temperature Td reaches a minimum value near the MPB. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both the polar and non-polar regions at temperatures near/above Td.  相似文献   

8.
CdxZn(1−x)S (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) thin films were deposited by the chemical spray pyrolysis technique using a less used combination of chemicals. Depositions were done at 573 K on cleaned glass substrates. The composition, surface morphology and structural properties of deposited films were studied using EDAX, SEM and X-ray diffraction technique. XRD studies reveal that all the films are crystalline with hexagonal (wurtzite) structure and inclusion of Cd into the structure of ZnS improved the crystallinity of the films. The value of lattice constant ‘a’ and ‘c’ have been observed to vary with composition from 0.382 to 0.415 nm and 0.625 to 0.675 nm, respectively. The band gap of the thin films varied from 3.32 to 2.41 eV as composition varied from x = 0.0–1.0. It was observed that presence of small amount of cadmium results in marked changes in the optical band gap of ZnS.  相似文献   

9.
We have used spectroscopic ellipsometry to determine the complex dielectric function of a series of ternary BexZn1−xTe thin films grown by molecular beam epitaxy. The II–VI semiconductor alloys were grown on InP substrates that had an InGaAs buffer layer. After the growth, X-ray diffraction experiments were performed in order to determine the alloy concentration. A standard inversion technique was used to obtain the dielectric functions from the measured ellipsometric spectra, obtained between 2000 nm (5000 cm−1) and 40,000 nm (250 cm−1). By modelling the dielectric function as a collection of oscillators, representing longitudinal and transverse optical phonons of the BexZn1−xTe lattice, we were able to recover the phonon spectra for this alloy system. It is argued that the additional phonon modes that are obtained from ellipsometry are best understood from the recently-proposed percolation model.  相似文献   

10.
Atomic and electronic structure modification of a metal-Cd1−xMnxTe interface is achieved using selective etching of the Cd1−xMnxTe surface (x=0, 0.34) and Cd adsorption. It is revealed that Te, TeO2, Mn3O4, and CdTeO3 are formed at the Cd1−xMnxTe surface etched in Br2 solution. Te and Cd1−xMnxTe produce TeCd1−xMnxTe heterojunctions, the salient features of which are nearly symmetric nonlinear I-V characteristics. At the Cd1−xMnxTe surface with adsorbed Cd, CdTe might form, resulting in a CdTe-Cd1−xMnxTe heterojunction. The metal-CdTe-Cd1−xMnxTe microstructure is characterized by a nonlinear dependence of current on voltage and rectifying behaviour. The results obtained give deep insight into electronic processes in metal-Cd1−xMnxTe microstructures.  相似文献   

11.
Ba(Ti1−x,Nix)O3 thin films were prepared on fused quartz substrates by a sol–gel process. X-ray diffraction and Raman scattering measurements showed that the films are of pseudo-cubic perovskite structure with random orientation and the change of lattice constant caused by Ni-doping with different concentrations is very small. Optical transmittance spectra indicated that Ni-doping has an obvious effect on the energy band structure. The energy gap of Ba(Ti1−x,Nix)O3 decreased linearly with the increase of Ni concentration. It indicates that the adjusting of band gap can be achieved by controlling the Ni-doping content accurately in Ba(Ti1−x,Nix)O3 thin films. This has potential application in devices based on ferroelectric thin films.  相似文献   

12.
The vapor grown SbSBrxI1−x (x=0.1; 0.5; 0.9) crystals with clear mirror surfaces have been used for infrared reflection measurements with Fourier spectrometer. The vibration frequencies along c(z)-axis have been derived from Kramers–Kroning and optical parameters fitting analysis of the experimental reflectivity spectra at T=300 K. The theoretical vibration spectra of SbSBrxS1−x (x=0.1; 0.5; 0.9) crystals in paraelectric phase (T=300 K) along c(z)-axis have been determined in quasiharmonic approximation by diagonalization of dynamical matrix. The theoretical vibration spectra of these crystals in ab(xy) plane have been determined in harmonic approximation. In this work we discuss the nature of anharmonism in SbSBrxI1−x crystals along the c(z)-axis.  相似文献   

13.
We investigate oriented abrupt steps (OASs), a type of surface defect in InSb/AlxIn1−xSb quantum-well (QW) samples grown on GaAs (0 0 1) substrates. Previous atomic force microscopy studies have reported that the OASs are oriented along the [1 1 0] and directions and have an inclination angle of 5°–15° with respect to the sample surface. Our plan-view and cross-sectional transmission electron microscopy analyses reveal that the OASs are the terminal edges of threading micro-twins at the sample surface. Hall effect measurements indicate that the density of OASs correlates with the electron mobility in the InSb QWs.  相似文献   

14.
The effect of Pr doping on structural properties and room temperature Raman spectroscopy measurements is investigated in manganites (Eu1−xPrx)0.6Sr0.4MnO3 (0≤x≤1.0) with fixed carrier concentration. The result of the Rietveld refinement of x-ray powder diffraction shows that these compounds crystallize in an orthorhombic distorted structure with a space group Pnma. It is evident that, with increasing Pr substitution, three types of orthorhombic structures can be distinguished. The phonon frequencies of the three main peaks, in room temperature Raman-scattering measurements, have been discussed together with their structural characteristics, such as bond-length, bond-angles, and the change of orthorhombic structure type. With the increase of Pr content, the mode at 491  cm−1 also shows a corresponding change. A step effect becomes evident, which seems to indicate the close dependence between the frequency shift of this mode and the change in crystal symmetry. This further supports the notion that the mode at 491  cm−1 is closely correlated with the Jahn–Teller distortion. Moreover, we have found that the lowest frequency peak (assigned as an A1g phonon mode) depends linearly on the tolerance factor t.  相似文献   

15.
R. Jimenez  A. Varez  J. Sanz   《Solid State Ionics》2008,179(13-14):495-502
The Rietveld analysis of ND patterns of polycrystalline Li0.2 − xNaxLa0.6TiO3 (0 ≤ x < 0.2) samples, recorded between 300 and 1075 K, shows an orthorhombic–tetragonal transformation, in which the octahedral tilting along the b axis is eliminated at ~ 773 K, but the vacancy ordering along the c axis remains. In Li rich samples, conductivity (10− 3 Ω− 1 cm− 1 at 300 K) departs from the Arrhenius behaviour, decreasing activation energies from 0.37 to 0.14 eV when octahedral tilting is eliminated. Successive Maxwell–Wagner blocking processes, detected in the real part of dielectric constant plots, have been ascribed to the Li blocking at interior domains, grain-boundary and electrode–electrolyte interfaces. The substitution of Li+ by Na+ decreases the amount of vacant A-sites, decreasing several orders of magnitude the conductivity when the amount of vacancies approaches the vacancy percolation threshold (np = 0.27). Below the percolation threshold, Li ions only display local mobility, remaining confined into small domains of perovskites.  相似文献   

16.
Far-infrared reflectivity spectra of Pb1−xMnxTe (0.0001x0.1) single crystals were measured in the 10–250 cm−1 range at room temperature. The analysis of the far-infrared spectra was made by a fitting procedure based on the model of coupled oscillators. In spite of the strong plasmon–LO phonon interaction, we found that the long wavelength optical phonon modes of these mixed crystals showed an intermediate one–two mode behavior.  相似文献   

17.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

18.
Lead-free piezoelectric ceramics (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBiGaO3 have been fabricated by an ordinary sintering technique, and their structure and electrical properties and depolarization temperature have been studied. The results of X-ray diffraction reveal that Bi0.5K0.5TiO3 and BiGaO3 diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure. An obvious change in microstructure with increasing concentration of Bi0.5K0.5TiO3 and BiGaO3 was observed. The piezoelectric constant d33 and the electromechanical coupling factor kp of the ceramics attain maximum values of 165 pC/N and 0.346 at y = 0.01(x = 0.18) and x = 0.21(y = 0.01), respectively. The temperature dependence of dielectric constant indicates an obvious relaxor characteristic with strong frequency dependence of dielectric constant. The depolarization temperature decreased with increasing content of BiGaO3 and first decreases and then increases with increasing amount of Bi0.5K0.5TiO3.  相似文献   

19.
SiOx films (1<x<2), 0.5 μm thick, have been elaborated by electron-gun evaporation. A thermal annealing of these films induced a phase separation leading to the formation of Si nanocrystals embedded in a SiO2 matrix. These films have been studied by infrared spectroscopic ellipsometry and by X-ray photoelectron spectroscopy (XPS). The effective dielectric function of the thin films has been extracted in the 600–5000 cm−1 range which allowed us to deduce the dielectric function of the matrix surrounding the Si-nc. A study of the Transverse Optical (TO) vibration mode has revealed the presence of SiOx into the matrix. Before XPS measurements, the films have been etched in fluorhydric acid to remove the superficial SiO2 layer formed during air exposure. The Si 2p core-level emission has been recorded. The decomposition of the Si 2p peak into contributions of the usual five tetrahedrons Si-(Si4−nOn) (n=0–4) has also revealed the presence of a SiOx phase. Consistency between infra-red and XPS results is discussed.  相似文献   

20.
We report on the operation and non-linear dynamics of a hot electron device that emits light with wavelength tunablity. The device consists of p-GaAs/n-Ga1−xAlxAs heterojunction containing an inversion layer on the p-side, and GaAs quantum wells on the n-side. It is referred to as HELLISH-2 (Hot Electron Light Emitting and Lasing in Semiconductor Heterostructure – Type 2). The device utilises hot electron longitudinal transport and the light emission is independent of the polarity of applied voltage. The wavelength of the emitted light can be tuned with applied bias from 1.50 to 1.61 eV. The operation of the device requires only two diffused in point contacts. Theoretical modelling of the device operation has been carried out and compared with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号