首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The collective polarizability anisotropy dynamics in a set of three aromatic liquids, benzene (Bz), hexafluorobenzene (HFB), and 1,3,5-trifluorobenzene (TFB), has been studied by molecular dynamics simulation. These liquids have very similar shapes, but different electrostatic interactions due to opposite polarities of C-H and C-F bonds, giving rise to different local intermolecular structures in the liquid phase. We have investigated how these structural arrangements affect polarizability anisotropy dynamics observed in optical Kerr-effect (OKE) spectroscopy. We have modeled the interaction-induced polarizability with the first-order dipole-induced dipole approximation, with the molecular polarizability distributed over the carbon sites. Local contributions to the librational OKE spectrum were computed separately for molecules participating in parallel or perpendicular relative orientations within the first coordination shell. We found that the relative locations of parallel and perpendicular librational bands of the OKE spectra are closely related to the corresponding pair energy distributions of the closest four neighbors of a given molecule, corresponding to a model of a harmonic oscillator in a cage of nearest neighbors. This model predicts higher librational frequencies for more attractive intermolecular interactions, which in all three liquids correspond to parallel local arrangements. On the diffusive orientational time scale, all three liquids exhibit slower relaxation of molecules in parallel arrangements, although the difference in relaxation rates is substantial only in TFB, which has the strongest tendency toward parallel stacking. The analysis of the collective polarizability relaxation was performed using two different approaches, the projection scheme (J. Chem. Phys. 1980, 72, 2801) and the theory developed by Steele (Mol. Phys. 1987, 61, 1031) for the second time derivatives applied to collective time correlations. Both approaches allow the decomposition of the OKE response into contributions from orientational relaxation and other dynamical processes. We find that they lead to different predictions on how the response depends on collective reorientation and processes arising from fluctuations in the interaction-induced polarizability. We discuss the reasons for these differences and the advantages and disadvantages of the two analysis schemes.  相似文献   

2.
The ultrafast dynamics, including the intermolecular vibrations and the diffusive orientational dynamics, of the neat C(s) symmetry condensed ring aromatic molecular liquids benzofuran, 1-fluoronaphtalene, and quinoline were investigated for the first time by means of femtosecond Raman-induced Kerr effect spectroscopy. To understand the features of these C(s) condensed ring aromatic molecular liquids, reference singular aromatic molecular liquids, furan, fluorobenzene, pyridine, and benzene, were also studied. High quality low-frequency Kerr spectra of the aromatic molecular liquids were obtained by Fourier-transform deconvolution analysis of the measured Kerr transients. The Kerr spectra of the C(s) condensed ring aromatic molecular liquids are bimodal, as are those of the reference singular aromatic molecular liquids. The first moment of the intermolecular vibrational spectrum and the peak frequencies of the high- and low-frequency components in the broad spectrum band were compared with their molecular properties such as the rotational constants, molecular weight, and intermolecular (bimolecular) force. The comparisons show that the molecular volume (related to molecular weight and rotational constants) is a dominant property for the characteristic frequency of the entire intermolecular vibrational spectrum. The observed intramolecular vibrational modes in the Kerr spectra of the aromatic molecular liquids were also assigned on the basis of the ab initio quantum chemical calculation results. In their picosecond diffusive orientational dynamics, the slowest relaxation time constant for both the condensed ring and singular aromatic molecular liquids can be accounted for by the simple Stokes-Einstein-Debye hydrodynamic model.  相似文献   

3.
A molecular dynamics simulation study is presented for the relaxation of the polarizability anisotropy in liquid mixtures of formamide and water, using a dipolar induction scheme that involves the intrinsic polarizability and first hyperpolarizability tensors of the molecules, and the dipole-quadrupole polarizability of water species. The long time diffusive decay of the collective polarizability anisotropy correlations exhibits a substantial slowing down as the formamide mole fraction increases in the mixture. The diffusive times for the polarizability relaxation obtained from the authors' simulations are in good agreement with optical Kerr effect experimental data, and they are found to correlate nearly linearly with the estimated mean lifetimes of the hydrogen bonds within the mixture, suggesting that the relaxation of the hydrogen bond network is responsible to some extent for the collective relaxation of the polarizability anisotropy of the mixture. The short time behavior of the polarizability anisotropy relaxation was investigated by computing the nuclear response function, R(t), which is very rapidly dominated by the formamide contribution as it is added to water, due to the much larger polarizability anisotropy of formamide molecules compared to that of water. Several contributions to the Raman spectrum were also analyzed as a function of composition, and the dynamical origin of the different bands was determined.  相似文献   

4.
The motion of water molecules in mixtures of water and d6-dimethyl sulfoxide (DMSO) has been explored through molecular dynamics (MD) simulations using the SPC/E water model (J. Chem. Phys. 1987, 91, 6269) and the P2 DMSO model (J. Chem. Phys. 1993, 98, 8160). We evaluate the self-intermediate scattering functions, FS(Q,t), which are related by a Fourier transform to the incoherent structure factors, S(Q,omega), measured in quasielastic neutron scattering (QNS) experiments. We compare our results to recent QNS experiments on these mixtures reported by Bordallo et al. (J. Chem. Phys. 2004, 121, 12457). In addition to comparing the MD data to the experimental signals, which correspond to a convolution of S(Q,omega) with a resolution function, we examine the rotational and translational components of FS(Q,t) and investigate to what extent simulation results for the single-molecule dynamics follow the dynamical models that are used in the analysis of the experimental data. We find that the agreement between the experimental signal and the MD data is quite good and that the portion of FS(Q,t) due to translational dynamics is well represented by the jump-diffusion model. The model parameters and their composition dependence are in reasonable agreement with experiment, exhibiting similar trends in water mobility with composition. Specifically, we find that water motion is less hindered in water-rich and water-poor mixtures than it is near equimolar composition. We find that the extent of coupling between rotational and translational motion contributing to FS(Q,t) increases as the equimolar composition of the mixture is approached. Thus, the decoupling approximation, which is used to extract information on rotational relaxation from QNS spectra at higher momentum transfer (Q) values, becomes less accurate than that in water-rich or DMSO-rich mixtures. We also find that rotational relaxation deviates quite strongly from the isotropic rotational diffusion model. We explore this issue further by investigating the behavior of orientational time correlations for different unit vectors and corresponding to Legendre polynomials of orders 1-4. We find that the rotational time correlations of water molecules behave in a way that is more consistent with the extended jump rotation model recently proposed by Laage and Hynes (Science 2006, 311, 832).  相似文献   

5.
The relaxation of the many-body polarizability in liquid acetonitrile and chloroform at room temperature was studied by molecular-dynamics simulations. The collective polarizability induced by intermolecular interactions was included using first- and all-orders dipole-induced-dipole models and calculated considering both molecule-centered and distributed site polarizabilities. The anisotropic response was analyzed using a separation scheme that allows a decomposition of the total response in terms of orientational and collision-induced effects. We found the method effective in approximately separating the contributions of these relaxation mechanisms, although the orientational-collision-induced interference makes a non-negligible contribution to the total response. In both liquids the main contribution to the anisotropic response is due to orientational dynamics, but intermolecular collision-induced (or translational) effects are important, especially at short times. We found that higher-order interaction-induced effects were essentially negligible for both liquids. Larger differences were found between the center-center and site-site models, with the latter showing faster polarizability relaxation and better agreement with experiment. Isotropic and anisotropic spectra were computed from the corresponding time correlation functions. The lowest-frequency contributions are largely suppressed in the isotropic spectra and their overall shape is similar to the purely collision-induced contribution to the anisotropic spectra, but with an amplitude which is smaller by a factor of approximately 5 in acetonitrile and approximately 3 in chloroform.  相似文献   

6.
The structure and dynamics of hydrogen‐bonded structures are of significant importance in understanding many binary mixtures. Since self‐diffusion is very sensitive to changes in the molecular weight and shape of the diffusing species, hydrogen‐bonded associated structures in dimethylsulfoxide–methanol (DMSO–MeOH) and DMSO–ethanol (DMSO–EtOH) mixtures are investigated using nuclear magnetic resonance (NMR) diffusion experiments and molecular dynamics (MD) simulations over the entire composition range at 298 K. The self‐diffusion coefficients of DMSO–MeOH and DMSO–EtOH mixtures decrease by up to 15% and 10%, respectively, with DMSO concentration, indicating weaker association as compared to DMSO–water mixtures. The calculated heat of mixing and radial distribution functions reveal that the intermolecular structures of DMSO–MeOH and DMSO–EtOH mixtures do not change on mixing. DMSO–alcohol hydrogen‐bonded dimers are the dominant species in mixtures. Direct comparison of the simulated and experimental data afford greater insights into the structural properties of binary mixtures.  相似文献   

7.
Complementary neutron spin-echo and x-ray experiments and molecular-dynamics simulations have been performed on difluorotetrachloroethane (CFCl2-CFCl2) glassy crystal. Static, single-molecule reorientational dynamics and collective dynamics properties are investigated. Our results confirm the strong analogy between molecular liquids and plastic crystals. The orientational disorder is characterized at different temperatures and a change in the nature of rotational dynamics is observed. A careful check of the rotational diffusion model is performed using self-angular correlation functions Cl with high l values and compared to results obtained on molecular liquids composed of A-B dumbbells. Below the crossover temperature at which slow dynamics emerge, we show that some scaling predictions of the mode coupling theory hold and that alpha-relaxation times and nonergodicity parameters are controlled by the nontrivial static correlations.  相似文献   

8.
In this study, we address the following question about room-temperature ionic liquids (RTILs). Are the properties of a RTIL more dependent on the charges of the molecular ions or on the fact that the liquid is a complex mixture of two species, one or both of which are asymmetric? To address this question and to better understand the interactions and dynamics in RTILs, we have prepared the organic ionic liquid 1-methoxyethylpyridinium dicyanoamide (MOEPy(+)/DCA(-)) and compared this RTIL with the analogous isoelectronic binary solution, comprised of equal parts of 1-methoxyethylbenzene (MOEBz) and dicyanomethane (DCM). In essence, we have created a RTIL and a nearly identical neutral pair in which we have effectively turned off the charges. To understand the intermolecular interactions in both of these liquids, we have characterized the bulk density and shear viscosity. Using femtosecond optical Kerr effect spectroscopy, we have also characterized the intermolecular vibrational dynamics and diffusive reorientation. To verify that the shape, polarizability, and electronic structure of the RTIL ions and the components of the neutral pair are truly quite similar, we have carried out density functional theory calculations on the individual molecular ion and neutral species.  相似文献   

9.
Slow to ultrafast dynamics of liquid acetone at variable temperature was investigated by depolarized Rayleigh and low-frequency Raman scattering spectroscopy, in the region 0-200 cm(-1). A detailed analysis was performed on the spectra and corresponding time responses, and a consistent view of the molecular dynamics of this dipolar solvent was obtained. The effects of temperature on the spectra were interpreted, and distinct dynamical processes identified. At very low frequencies, or long time scales, acetone dynamics is characterized by a slow diffusive reorientation obeying the Stokes-Einstein-Debye hydrodynamic theory only in the limit of subslip boundary conditions. An alternative model based on the microviscosity concept proved to be able to reproduce this correlation time and its temperature dependence. A comparative analysis of collective and single-molecule reorientational times, these latter estimated from intramolecular Raman spectra, led to an orientational correlation parameter g(2) of unity, which denotes a statistical disorder of molecular polarizability tensors. A fast local restructuring process is putatively responsible for an additional contribution at subpicosecond time scales often referred to as intermediate response in other molecular liquids. The high frequency portion of the dynamical susceptibility showed the signature of librational intermolecular motions, giving rise to an ultrafast decay of the time correlation function of polarizability anisotropy. The overall approach, which provided valuable information on dynamics, structure and molecular interactions of neat acetone, will be applied to acetone electrolytic solutions.  相似文献   

10.
The intermolecular methane-methane and benzene (Bz)-methane interactions formulated in this paper are suitable to investigate systems of increasing complexity. The proposed CH(4)-CH(4) and Bz-CH(4) potential energy functions are indeed applied to study some macroscopic properties of methane and important features of both small Bz-(CH(4))(n) (n > 1-10) clusters and Bz surrounded by several CH(4) molecules. Relevant parameters of the interaction, derived from molecular polarizability components, have been proved to be useful to describe in a consistent way both size repulsion and dispersion attraction forces. The proposed potential model also allows one to isolate the role of the different intermolecular energy contributions. The spatial distribution of the CH(4) molecules in the clusters is investigated by means of molecular dynamics simulations under various conditions, even when methane phase transition from liquid to gas is likely to occur. In addition, several properties, such as radial distribution functions, density values, and mean diffusion coefficients, are analyzed in detail.  相似文献   

11.
The rotational dynamics of benzene and water in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride are studied using molecular dynamics (MD) simulation and NMR T(1) measurements. MD trajectories based on an effective potential are used to calculate the (2)H NMR relaxation time, T(1) via Fourier transform of the relevant rotational time correlation function, C(2R)(t). To compensate for the lack of polarization in the standard fixed-charge modeling of the IL, an effective ionic charge, which is smaller than the elementary charge is employed. The simulation results are in closest agreement with NMR experiments with respect to the temperature and Larmor frequency dependencies of T(1) when an effective charge of ±0.5e is used for the anion and the cation, respectively. The computed C(2R)(t) of both solutes shows a bi-modal nature, comprised of an initial non-diffusive ps relaxation plus a long-time ns tail extending to the diffusive regime. Due to the latter component, the solute dynamics is not under the motional narrowing condition with respect to the prevalent Larmor frequency. It is shown that the diffusive tail of the C(2R)(t) is most important to understand frequency and temperature dependencies of T(1) in ILs. On the other hand, the effect of the initial ps relaxation is an increase of T(1) by a constant factor. This is equivalent to an "effective" reduction of the quadrupolar coupling constant (QCC). Thus, in the NMR T(1) analysis, the rotational time correlation function can be modeled analytically in the form of aexp (-t/τ) (Lipari-Szabo model), where the constant a, the Lipari-Szabo factor, contains the integrated contribution of the short-time relaxation and τ represents the relaxation time of the exponential (diffusive) tail. The Debye model is a special case of the Lipari-Szabo model with a = 1, and turns out to be inappropriate to represent benzene and water dynamics in ILs since a is as small as 0.1. The use of the Debye model would result in an underestimation of the QCC by a factor of 2-3 as a compensation for the neglect of the Lipari-Szabo factor.  相似文献   

12.
13.
14.
The structure and microscopic dynamics of liquid mixtures of benzene and hexafluorobenzene at room temperature and several compositions have been studied by molecular-dynamics simulations. In this implementation we have rescaled the intermolecular H-F cross potential parameters obtained from the Lorentz-Berthelot combining rules, in order to avoid the substantial overestimation of the energy of mixing predicted by the model when the usual rules are employed. We found that a reduction in the strength of cross H-F interactions by 50% relative to the geometric mean is required in order to get a good agreement with experiments. Radial-angular pair-correlation functions between like and unlike species have been computed and analyzed, by comparing them with the correlations in the corresponding neat liquids. We have also studied the microscopic intermolecular momentum transfer, by computing the time correlation function between the initial velocity of a central molecule and later velocities of neighboring molecules. Structural and dynamical information extracted from the mentioned functions seem to be consistent with the picture of relatively long-lived benzene-hexafluorobenzene (Bz-Hf) complexes present in the mixtures, which would be responsible for the considerable perturbation of the structure in the first shell of like species, and would be moving within the liquid in a parallel face-to-face configuration. Using the tools developed originally to estimate hydrogen-bond lifetimes in liquids, we have computed the lifetimes of the Bz-Hf complexes as a function of the mixture composition, by two different methods: the direct time-averaging scheme and from the autocorrelation function of bond occupation numbers. The obtained lifetimes are strongly dependent on the scheme chosen to compute the characteristic times. We have obtained for the Bz-Hf dimer in solution, at room temperature, lifetimes in the range of 30-40 ps from averaging schemes and around 60-120 ps from autocorrelation function methods. In the latter case, the longest times correspond to the equimolar mixture.  相似文献   

15.
The ultrafast dynamics of liquid sulphur dioxide have been studied over a wide temperature range and in solution. The optically heterodyne-detected and spatially masked optical Kerr effect (OKE) has been used to record the anisotropic and isotropic third-order responses, respectively. Analysis of the anisotropic response reveals two components, an ultrafast nonexponential relaxation and a slower exponential relaxation. The slower component is well described by the Stokes-Einstein-Debye equation for diffusive orientational relaxation. The simple form of the temperature dependence and the agreement between collective (OKE) and single molecule (e.g., NMR) measurements of the orientational relaxation time suggests that orientational pair correlation is not significant in this liquid. The relative contributions of intermolecular interaction-induced and single-molecule orientational dynamics to the ultrafast part of the spectral density are discussed. Single-molecule librational-orientational dynamics appear to dominate the ultrafast OKE response of liquid SO2. The temperature-dependent OKE data are transformed to the frequency domain to yield the Raman spectral density for the low-frequency intermolecular modes. These are bimodal with the lowest-frequency component arising from diffusive orientational relaxation and a higher-frequency component connected with the ultrafast time-domain response. This component is characterized by a shift to higher frequency at lower temperature. This result is analyzed in terms of a harmonic librational oscillator model, which describes the data accurately. The observed spectral shifts with temperature are ascribed to increasing intermolecular interactions with increasing liquid density. Overall, the dynamics of liquid SO2 are found to be well described in terms of molecular orientational relaxation which is controlled over every relevant time range by intermolecular interactions.  相似文献   

16.
We report classical and tight-binding molecular dynamics simulations of the C(60) fullerene and cubane molecular crystal in order to investigate the intermolecular dynamics and polymerization processes. Our results show that, for 200 and 400 K, cubane molecules remain basically fixed, presenting only thermal vibrations, while C(60) fullerenes show rotational motions. Fullerenes perform "free" rotational motions at short times (approximately < 1 ps), small amplitude hindered rotational motions (librations) at intermediate times, and rotational diffusive dynamics at long times (approximately > 10 ps). The mechanisms underlying these dynamics are presented. Random copolymerizations among cubanes and fullerenes were observed when temperature is increased, leading to the formation of a disordered structure. Changes in the radial distribution function and electronic density of states indicate the coexistence of amorphous and crystalline phases. The different conformational phases that cubanes and fullerenes undergo during the copolymerization process are discussed.  相似文献   

17.
Five models for the site-site intermolecular pair interactions of methane are compared in some detail and used to investigate both structural and dynamical properties of the dense liquid deuteromethane by means of molecular dynamics (MD) simulations. The orientational distribution probabilities of molecular pairs are carefully analyzed for each anisotropic potential model. We propose a revision of existing classification methods used to group the innumerable relative orientations of methane-methane pairs into six basic geometries. With this new approach, our results for the probability of the six basic categories as a function of the intermolecular distance are different from the ones present in the literature, where the role of the angular spread on the anisotropic interaction energy is not taken in full consideration and certain configurations with no significant change in the pair-potential are assigned to different categories. The analysis of the static orientational correlations in liquid methane and the prevalence of certain configurations in different ranges guide the subsequent discussion of the MD model-dependent results for the dynamic structure factor. Comparison with our inelastic neutron scattering results for liquid CD(4) at the nanometer and picosecond space and time scales allows us to confirm the full adequacy of the Tsuzuki, Uchimaru and Tanabe model of 1998 with respect to more recent potentials.  相似文献   

18.
Molecular dynamics (MD) simulations have been performed for complexes of a dimeric capsule of a tetraurea calixarene with a series of twelve aromatic guests. A distinct orientational preference and a restriction of the internal mobility was found which depend on the size and electronic properties of the guests. The results are in agreement with the CIS values obtained from (1)H NMR spectroscopic measurements and with complexation selectivities obtained by competition experiments.  相似文献   

19.
Diffusion of monatomic guest species within confined media has been understood to a good degree due to investigations carried out during the past decade and a half. Most guest species that are of industrial relevance are actually polyatomics such as, for example, hydrocarbons in zeolites. We attempt to investigate the influence of non-spherical nature of guest species on diffusion. Recent molecular dynamics (MD) simulations of motion of methane in NaCaA and NaY, benzene in NaY and one-dimensional channels AlPO4−5, VPI−5 and carbon nanotube indicate interesting insights into the influence of the host on rotational degrees of freedom and orientational properties. It is shown that benzene in one-dimensional channels where the levitation parameter is near unity exhibits translational motion opposite to what is expected on the basis of molecular anisotropy. Rotational motion of benzene also possesses rotational diffusivities aroundC 6 and C2axes opposite to what is expected on the basis of molecular geometry. Methane shows orientational preference for 2+ 2 or 1 + 3 depending on the magnitude of the levitation parameter.  相似文献   

20.
In this paper, the nanostructural organization and subpicosecond intermolecular dynamics in the mixtures of CS(2) and the room temperature ionic liquid (IL) 1-pentyl-3-methylimidazolium bis{(trifluoromethane)sulfonyl}amide ([C(5)mim][NTf(2)]) were studied as a function of concentration using molecular dynamics (MD) simulations and optical heterodyne-detected Raman-induced Kerr effect spectroscopy. At low CS(2) concentrations (<10 mol.% CS(2)/IL), the MD simulations indicate that the CS(2) molecules are localized in the nonpolar domains. In contrast, at higher concentrations (≥10 mol.% CS(2)/IL), the MD simulations show aggregation of the CS(2) molecules. The optical Kerr effect (OKE) spectra of the mixtures are interpreted in terms of an additivity model with the components arising from the subpicosecond dynamics of CS(2) and the IL. Comparison of the CS(2)-component with the OKE spectra of CS(2) in alkane solvents is consistent with CS(2) mainly being localized in the nonpolar domains, even at high CS(2) concentrations, and the local CS(2) concentration being higher than the bulk CS(2) concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号