首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ion conductors Li4+xAlxSi1‐xO4‐yLi3PO4 (x = 0 to 0.5, y = 0 to 0.6) were prepared by the Sol‐Gel method. The powder and sintered samples were characterized by DTA‐TG, XRD, SEM, and AC impedance techniques. The conductivity and sinterability increased when y increased from 0 to 0.4 in the Li4+xAlxSi1‐xO4‐yLi3PO4. The particle size of the powder samples is about 0.13 μm. The maximum conductivity at 20 °C is 3.128 × 10?5s cm?1 for Li4.4Al0.4Si0.6O4‐0.4 Li3PO4.  相似文献   

2.
IntroductionLithiumionconductorsarepromisingmaterialsformanykindsofelectrochemicalapplication ,suchaselec trolytesforhigh energydensitybatteries .1Thepropertiesofhighionicconductivity ,highdecompositionpotential,stabilityandcompatibilityagainstelectrodess…  相似文献   

3.
The Li4+xMxSi4+xO4‐yLi2O (M=Al, B; x = 0 to 0.6, y = 0 to 0.5) ion conductors were prepared by the Sol‐Gel method and examined in detail. The powder and sintered samples were characterized by DTA‐TG, XRD, SEM, and AC impedance techniques. The experimental results show that the conductivity and sinterability in creased with the amount of excess lithium oxide in the silicate. The Li2O phase acts as a flux to accelerate the sintering process and to obtain high conductivity of grain boundaries. The particle size of the sintered pellets is about 0.25 μm. The maximum conductivity at 200 °C is 5.40 × 10?3s cm?1 for Li4.4Al0.4 Si0.6O4‐0.3Li2O.  相似文献   

4.
The Li4.4Al0.4Si0.6O4‐xY2O3 (x = 0 to 0.5) ion conductors were prepared by the Sol‐Gel method and examined in detail. The powder and sintered samples were characterized by DTA‐TG, XRD, SEM, and AC impedance techniques. The experimental results show that the conductivity and sinterability increased with the amount of excess Y2O3 in the silicate. The particle size of the powder samples is about 0.12 μm. The maximum conductivity at 16 °C is 2.925 × 10?5s·cm?1 for Li4.4Al0.4Si0.6O4‐0.3 Y2O3.  相似文献   

5.
The new lithium ionic conductors, thio-LISICON (LIthium SuperIonic CONductor), were found in the ternary Li2S-SiS2-Al2S3 and Li2S-SiS2-P2S5 systems. Their structures of new materials, Li4+xSi1−xAlxS4 and Li4−xSi1−xPxS4 were determined by X-ray Rietveld analysis, and the electric and electrochemical properties were studied by electronic conductivity, ac conductivity and cyclic voltammogram measurements. The structure of the host material, Li4SiS4 is related to the γ-Li3PO4-type structure, and when the Li+ interstitials or Li+ vacancies were created by the partial substitutions of Al3+ or P5+ for Si4+, large increases in conductivity occur. The solid solution member x=0.6 in Li4−xSi1−xPxS4 showed high conductivity of 6.4×10-4 S cm−1 at 27°C with negligible electronic conductivity. The new solid solution, Li4−xSi1−xPxS4, also has high electrochemical stability up to ∼5 V vs Li at room temperature. All-solid-state lithium cells were investigated using the Li3.4Si0.4P0.6S4 electrolyte, LiCoO2 cathode and In anode.  相似文献   

6.
Polycrystalline Li3Sc(BO3)2 was synthesized through the solid-state reaction, which is air-, water- and thermal-stable below about 929 °C. Its crystal structure was resolved and refined on the basis of powder X-ray diffraction data. The metal-borate framework is built up from ScO6 octahedra connected to each other by sharing common edges, corners and faces of BO3 units and LiO4 groups. Coordination surrounding of B-O in this structure, [BO3]3− group, was confirmed by an infrared absorption spectrum of an Li3Sc(BO3)2. According to the electronic structure calculated by first-principles calculations, an Li3Sc(BO3)2 is an insulator with a wide indirect energy band gap of about 4.4 eV. Considering the facile synthesis, large band gap, and thermal stability and excellent Tb3+-doped photoluminescence characteristics of this compound in general, it may be a good candidate as host of phosphors deposited on chip of the light-emitting diodes for white-color conversion.  相似文献   

7.
Gehlenite, Ca2Al[AlSiO7], has melilite‐type structure with space group . It contains two topologically distinct positions coordinated tetrahedrally by oxygen. One is completely occupied by Al3+, whereas the other one contains Al3+ and Si4+. Normally, the Al3+ molar fraction in the second tetrahedrally coordinated position does not exceed xAl = 0.5, i.e. the so‐called Loewenstein‐rule is obeyed. In this contribution the structural variations in the melilite‐type compounds of the compositions LaxCa2?xAl[Al1+xSi1?xO7], EuxCa2?xAl[Al1+xSi1?xO7] and ErxCa2?xAl[Al1+xSi1?xO7] are discussed. All members of the solid solution except the end‐members violate Loewenstein's rule. Rietveld refinements against X‐ray powder diffraction patterns confirm that the compounds have space group , without changes in the Wyckoff‐positions of the ions compared to gehlenite.  相似文献   

8.
Searching efficient red phosphors under near‐UV or blue light excitation is practically important to improve the current white light‐emitting diodes (WLEDs). Eu2+‐ and Mn4+‐based red phosphors have been extensively studied. Here we proposed that Eu3+ is also a promising activator when it resides on a noncentrosymmetric coordination site. We proved that Cd4GdO(BO3)3 is a good host, which has a significantly distorted coordination for Eu3+. A careful crystallographic study was performed on the solid solutions of Cd4Gd1‐xEuxO(BO3)3 (0≤x≤1) by Rietveld refinements. The as‐doped Eu3+ cations locate at the Gd3+ site and are well separated by CdO8, CdO6 and BO3 groups; thus, only a slight concentration quenching was observed at ≈80 atom % Eu3+. Most importantly, the parity‐forbidden law of 4f‐4f transitions for Eu3+ are severely depressed, thus the absorptions at ≈393 and ≈465 nm are remarkable. Cd4Gd0.2Eu0.8O(BO3)3 can be pumped by a 395 nm LED chip to give a bright red emission, and when mixed with other commercial blue and green phosphors, it can emit the proper white light (0.3657, 0.3613) with a suitable Ra≈87 and correlated colour temperature ≈4326 K. In‐situ photoluminescence study indicated the low thermal quenching of these borate phosphors, especially under 465 nm excitation. Our case proves the practicability to develop near‐UV excited red phosphors in rare‐earth‐containing borates.  相似文献   

9.
The structure of an Al3+ stabilized phase Li3−3xAlxBO3 (x≈0.18) was determined by means of single crystal X-ray diffraction. This phase crystallizes in space group P6122 or P6522, with lattice constants , and Z=6. The unit cell consists of six layers of BO3 groups with Li+ cations distributing statistically on five crystallographic sites, none of which is fully occupied. The Li sites are close to each other and a three-dimensional network results when Li sites only within 1.65 Å are connected. Significant ionic conductivity was observed for this phase.  相似文献   

10.
Few studies on orthosilicate cathodes co‐doped with two cations have been reported until now. Here, we report the synthesis of Mn and Al co‐doped Li2Fe0.8?xMn0.2AlxSiO4 (x = 0.05 and 0.1) by a solid‐state reaction route and characterized by X‐ray diffraction (XRD), particle size analysis, scanning electron microscopy (SEM), galvanostatic charge/discharge tests, and capacity intermittent titration technique (CITT), as compared to the single‐doped Li2Fe0.8Mn0.2SiO4. Though the co‐doping leads to a slight decreased capacity owing to the increased impurity and Al3+ inertia, a better cycling performance is obtained as expected. Especially when x is 0.05, the modified sample (Li2Fe0.75Mn0.2Al0.05SiO4) shows an initial discharge capacity of 159.3 mAh/g and high capacity retention of 78% after 50 charge/discharge cycles. The present work indicates that a synergistic effect of Mn and Al co‐substitution at the Fe site could partly make up the disadvantage of single Mn doping, and might provide an effective guide for the dopant incorporation to Li2FeSiO4 systems.  相似文献   

11.
Highly lithium ion conductive composites with Al-doped Li7La3Zr2O12 (LLZ) and amorphous Li3BO3 were prepared from sol–gel derived precursor powders of LLZ and Li3BO3. Precursor LLZ powders with cubic phase were obtained by a heat treatment of the precursor dried gel at 600 °C. Pellets of the mixture of the obtained LLZ and Li3BO3 were first held at 700 °C, and then successively sintered at 900 °C. Density of the sintered pellet with Li3BO3 was larger than that of the pellet without Li3BO3. From the TEM observation, the pellets were found to consist of cubic LLZ and amorphous Li3BO3. Total electrical conductivity of the obtained LLZ–Li3BO3 composite was 1 × 10 4 Scm 1 at 30 °C.  相似文献   

12.
Dense ceramics (Li4+xSi1−xAlxO4 with 0 ≤ x ≤ 0.3) are obtained by sintering at 700–900°C, without prior calcination, of sol-gel powders prepared by an alkoxide-hydroxide route. In comparison with the pure lithium orthosilicate (3 × 10−4 S · cm−1 at 350°C), only a slight enhancement of the ionic conductivity is noted for monophase ceramics with Li4SiO4-type structure (5 × 10−4 S · cm−1 at 350°C for x = 0.3). Higher conductivity (2 × 10−2 S · cm−1 at 350°C) is observed for an heterogeneous material formed of a lithium silicoaluminate phase (x = 0.2) with the Li4SiO4-type structure coexisting with lithium hydroxide. In this two-phase material, ac conductivity and 7Li spin-lattice relaxation data are consistent with the formation of a new kinetic path, via a thin layer along the interface, which enhances the lithium mobility.  相似文献   

13.
Emergence of phases in lithium aluminum silicate (LAS) glasses of composition (wt%) xLi2O-71.7SiO2-(17.7−x)Al2O3-4.9K2O-3.2B2O3-2.5P2O5 (5.1≤x≤12.6) upon heat treatment were studied. 29Si, 27Al, 31P and 11B MAS-NMR were employed for structural characterization of both LAS glasses and glass-ceramics. In glass samples, Al is found in tetrahedral coordination, while P exists mainly in the form of orthophosphate units. B exists as BO3 and BO4 units. 27Al NMR spectra show no change with crystallization, ruling out the presence of any Al containing phase. Contrary to X-ray diffraction studies carried out, 11B (high field 18.8 T) and 29Si NMR spectra clearly indicate the unexpected crystallization of a borosilicate phase (Li,K)BSi2O6, whose structure is similar to the aluminosilicate virgilite. Also, lithium disilicate (Li2Si2O5), lithium metasilicate (Li2SiO3) and quartz (SiO2) were identified in the 29Si NMR spectra of the glass-ceramics. 31P NMR spectra of the glass-ceramics revealed the presence of Li3PO4 and a mixed phase (Li,K)3PO4 at low alkali concentrations.  相似文献   

14.
Composite polymer electrolyte (CPE) films consisting of PEO, LiClO4, and Li1.3Al0.3Ti1.7(PO4)3 with fixed EO/Li = 8 but different relative compositions of the two lithium salts were prepared by the solution casting method. The CPE films were characterized using SEM, DSC, electrical impedance spectroscopy (EIS), and ion transference number measurement. It was found that the incorporation of LiClO4 and Li1.3Al0.3Ti1.7(PO4)3 into PEO by keeping EO/Li = 8 reduced the crystallinity of PEO from 50.34% to the range of 3.57–15.63% depending upon the relative composition of the two salts. The room temperature impedance spectra of the CPE films all exhibited a shape of depressed semicircle in the high frequency range and inclined line in the low frequency range, but the high temperature ones were mainly inclined lines. The Li+ ionic conductivity of the CPE films mildly increased and then decreased with increasing Li1.3Al0.3Ti1.7(PO4)3 content, and the maximum conductivities were obtained at Li1.3Al0.3Ti1.7(PO4)3 content of 15 wt % for all measuring temperatures, for example, 1.378 × 10?3 S/cm at 100 °C and 1.387 × 10?5 S/cm at 25 °C. The temperature dependence of the ionic conductivity of the CPE films follows the Vogel–Tamman–Fulcher (VTF) equation The pseudo activation energies (Ea) were rather low, 0.053–0.062 eV, indicating an easy migration of Li+ in the amorphous phase dominant PEO. The pre‐exponent constant A and ion transference number tLi+ were found to have a similar variation tendency with increasing Li1.3Al0.3Ti1.7(PO4)3 content and reached their maximums also at Li1.3Al0.3Ti1.7(PO4)3 content of 15 wt %. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 743–751, 2005  相似文献   

15.
The title compound, bis­(borato)­dodeca(tert‐butoxo)­octa­deca­lithium, [Li18(BO3)2(C4H9O)12], is formulated conveniently as [{(tBuOLi)3(Li3BO3)}2(tBuOLi)6]. A central 12‐membered ring and two outer six‐membered rings are formed by alternating Li+ cations and alkoxide O atoms. Sandwiched between the central ring and each of the outer rings is a planar array of three further Li+ cations surrounding a [BO3]3− anion. Thus, the mol­ecule consists of a cationic [Li18(OtBu)12]6+ cage encapsulating two borate anions. This compound is the first example of a structurally characterized polynuclear lithium borate, and a rare case of a lithium alkoxide cage with nuclearity greater than eight. All the alkoxide ligands are triply bridging, and the lithium ions have trigonal‐planar, trigonal‐pyramidal and fourfold coordination, all with major distortions from regular coordination geometry.  相似文献   

16.
In this study, lithium yttrium borate (LYBO) phosphor was doped with various concentrations of trivalent dysprosium ions. To produce these phosphors, the raw materials were sintered. The phase conformation, crystallinity, grain size, and overall morphology of the synthesized phosphors were studied with X-ray diffraction and scanning electron microscopy. The optimized LYBO phosphor, i.e., the LYBO phosphor that exhibited the highest X-ray- and ultraviolet (UV)-induced photoluminescent intensities, had a Dy3+ concentration of 4 mol%. Photoluminescence analysis showed that this phosphor could be easily excited with near-UV light (300–400 nm). The dominant photoluminescence bands were found in the blue (480 nm) and yellow (577 nm) regions of the visible spectrum. The light yield of the X-ray-induced luminescence of the optimized Li6Y(BO3)3:Dy3+ was found to be 66% of that of the commercially available X-ray imaging material, Gd2O2S:Tb3+ (GOS). The chromaticity coordinates of the Li6Y(BO3)3:Dy3+ phosphor were x = 0.34 and y = 0.32, which agree well with achromatic white (x = 0.33, y = 0.33). The results of this study show that the synthesized Li6Y(BO3)3:Dy3+ phosphor could be used as X-ray imaging material.  相似文献   

17.
We describe the synthesis, crystal structures, and optical absorption spectra/colors of 3d‐transition‐metal‐substituted α‐LiZnBO3 derivatives: α‐LiZn1?xMIIxBO3 (MII=CoII (0<x<0.50), NiII (0<x≤0.05), CuII (0<x≤0.10)) and α‐Li1+xZn1?2xMIIIxBO3 (MIII=MnIII (0<x≤0.10), FeIII (0<x≤0.25)). The crystal structure of the host α‐LiZnBO3, which is both disordered and distorted with respect to Li and Zn occupancies and coordination geometries, is largely retained in the derivatives, which gives rise to unique colors (blue for CoII, magenta for NiII, violet for CuII) that could be of significance for the development of new, inexpensive, and environmentally friendly pigment materials, particularly in the case of the blue pigments. Accordingly, this work identifies distorted tetrahedral MO4 (M=Co, Ni, Cu) structural units, with a long M?O bond that results in trigonal bipyramidal geometry, as new chromophores for blue, magenta, and violet colors in a α‐LiZnBO3 host. From the L*a*b* color coordinates, we found that Co‐substituted compounds have an intense blue color that is stronger than that of CoAl2O4 and YIn0.90Mn0.10O3. The near‐infrared (NIR) reflectance spectral studies indicate that these compounds exhibit a moderate IR reflectivity that could be significant for applications as “cool pigments”.  相似文献   

18.
A series of the solid‐solution phosphors Lu3?x?yMnxAl5?xSixO12:yCe3+ is synthesized by solid‐state reaction. The obtained phosphors possess the garnet structure and exhibit similar excitation properties as the phosphor Lu3Al5O12:Ce3+, but with an effectively improved red component in the emission spectrum. This can be attributed to the energy transfer from Ce3+ to Mn2+. Our investigation reveals that electric dipole–quadrupole interactions dominate the energy‐transfer mechanism and that the critical distance determined by the spectral overlap method is about 9.21 Å. The color‐tunable emissions of the Lu3?x?yMnxAl5?xSixO12:yCe3+ phosphor as a function of Mn3Al2Si3O12 content are realized by continuously shifting the chromaticity coordinates from (0.354, 0.570) to (0.462, 0.494). They indicate that the obtained material may have potential application as a blue radiation‐converting phosphor for white LEDs with high‐quality white light.  相似文献   

19.
The lithium-conducting solid electrolytes in the Li4 ? 2x Cd x GeO4 (0 ≤ x ≤ 0.6) system are synthesized. Their crystal structure and temperature and concentration dependences of conductivity are studied. The specimens with the highest conductivity have a γ-Li3PO4-derivative structure. The solid solutions with x = 0.15–0.25 are stable at the room temperature, whereas the specimens with x ≥ 0.3 decompose yielding Li2CdGeO4 below 310 ± 10°C. Li3.6Cd0.2GeO4 solid solution exhibits the highest conductivity (5.25 × 10?2 S cm?1 at 300°C). The factors, which affect the conductivity of synthesized solid electrolytes, are considered.  相似文献   

20.
Compounds of the system Li1+ x M x Ti2– x (PO4)3 (where M=Sc, Al, Fe, Y; x=0.3) were synthesized by a solid-state reaction and studied by X-ray diffraction. The ceramic samples were sintered and investigated by complex impedance spectroscopy in the frequency range 106–1.2×109 Hz in the temperature range 300–600 K. Two relaxation dispersions related to the fast Li+ ion transport in bulk and grain boundaries were found. The activation energies of the bulk conductivity and relaxation frequency were obtained from the slops of Arrhenius plots. The values of the activation energies of the bulk ionic conductivity and relaxation frequency were found to be very similar in all the materials investigated. That can be attributed to the fact that the temperature dependences of the bulk conductivity are caused only by the mobility of the fast Li+ ions, while the number of charge carriers remains constant with temperature. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号