首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We characterized valence anionic states of 1-methylcytosine using various electronic structure methods. We found that the most stable valence anion is related to neither the canonical amino-oxo nor a rare imino-oxo tautomer, in which a proton is transferred from the N4 to N3 atom. Instead, it is related to an imino-oxo tautomer, in which the C5 atom is protonated. This anion is characterized by an electron vertical detachment energy (VDE) of 2.12 eV and it is more stable than the anion based on the canonical tautomer by 1.0 kcal/mol. The latter is characterized by a VDE of 0.31 eV. Another unusual low-lying imino-oxo tautomer with a VDE of 3.60 eV has the C6 atom protonated and is 3.6 kcal/mol less stable than the anion of the canonical tautomer. All these anionic states are adiabatically unbound with respect to the canonical amino-oxo neutral, with the instability of 5.8 kcal/mol for the most stable valence anion. The mechanism of formation of anionic tautomers with carbon atoms protonated may involve intermolecular proton transfer or dissociative electron attachment to the canonical neutral tautomer followed by a barrier-free attachment of a hydrogen atom to the C5 or C6 atom. The six-member ring structure of anionic tautomers with carbon atoms protonated is unstable upon an excess electron detachment. Indeed the neutral systems collapse without a barrier to a linear or a bicyclo structure, which might be viewed as lesions to DNA or RNA. Within the PCM hydration model, the anions become adiabatically bound with respect to the corresponding neutrals, and the two most stable tautomers have a carbon atom protonated.  相似文献   

2.
The photoelectron spectrum (PES) of the uracil anion is reported and discussed from the perspective of quantum chemical calculations of the vertical detachment energies (VDEs) of the anions of various tautomers of uracil. The PES peak maximum is found at an electron binding energy of 2.4 eV, and the width of the main feature suggests that the parent anions are in a valence rather than a dipole-bound state. The canonical tautomer as well as four tautomers that result from proton transfer from an NH group to a C atom were investigated computationally. At the Hartree-Fock and second-order Moller-Plesset perturbation theory levels, the adiabatic electron affinity (AEA) and the VDE have been converged to the limit of a complete basis set to within +/-1 meV. Post-MP2 electron-correlation effects have been determined at the coupled-cluster level of theory including single, double, and noniterative triple excitations. The quantum chemical calculations suggest that the most stable valence anion of uracil is the anion of a tautomer that results from a proton transfer from N1H to C5. It is characterized by an AEA of 135 meV and a VDE of 1.38 eV. The peak maximum is as much as 1 eV larger, however, and the photoelectron intensity is only very weak at 1.38 eV. The PES does not lend support either to the valence anion of the canonical tautomer, which is the second most stable anion, and whose VDE is computed at about 0.60 eV. Agreement between the peak maximum and the computed VDE is only found for the third most stable tautomer, which shows an AEA of approximately -0.1 eV and a VDE of 2.58 eV. This tautomer results from a proton transfer from N3H to C5. The results illustrate that the characteristics of biomolecular anions are highly dependent on their tautomeric form. If indeed the third most stable anion is observed in the experiment, then it remains an open question why and how this species is formed under the given conditions.  相似文献   

3.
We characterized anionic states of thymine using various electronic structure methods, with the most accurate results obtained at the CCSD(T)/aug-cc-pVDZ level of theory followed by extrapolations to complete basis set limits. We found that the most stable anion in the gas phase is related to an imino-oxo tautomer, in which the N1H proton is transferred to the C5 atom. This valence anion, aT(c5)(nl), is characterized by an electron vertical detachment energy (VDE) of 1251 meV and it is adiabatically stable with respect to the canonical neutral nT(can) by 2.4 kcal/mol. It is also more stable than the dipole-bound (aT(dbs)(can)), and valence anion aT(val)(can) of the canonical tautomer. The VDE values for aT(dbs)(can)and T(val)(can) are 55 and 457 meV, respectively. Another, anionic, low-lying imino-oxo tautomer with a VDE of 2458 meV has a proton transferred from N3H to C5 aT(c5)(n3). It is less stable than aT(val)(can) by 3.3 kcal/mol. The mechanism of formation of anionic tautomers with the carbons C5 or C6 protonated may involve intermolecular proton transfer or dissociative electron attachment to the canonical neutral tautomer followed by a barrier-free attachment of a hydrogen atom to C5. The six-member ring structure of the anionic tautomers with carbon atoms protonated is unstable upon an excess electron detachment. Within the PCM hydration model, the low-lying valence anions become adiabatically bound with respect to the canonical neutral; becomes the most stable, being followed by aT(c5)(nl), aT(c5)(n3), aT(can), and aT(c5)(nl).  相似文献   

4.
A novel method for preparation of allylic zirconium reagents directly from 1-alkenes via zirconocene-olefin complex has been developed. Selective transfer of the hydride of zirconocene allyl hydride complex, a tautomer of zirconocene-olefin complex, to diisopropyl ketone generates the corresponding zirconocene alkoxide allyl. The allylic zirconium reagents formed effects stereoselective allylation of aldehyde at 25 degrees C and -78 degrees C to provide syn- and anti-homoallyl alcohols, respectively. The anti-isomer is formed via a six-membered chair transition state under kinetic control. The syn-selectivity can be rationalized by considering isomerization of the anti-adduct by a retroallylation process.  相似文献   

5.
d0 Tungsten alkylidyne alkyl complex (Me3SiCH2)3W(CSiMe3)(PMe3) (4a) was found to undergo a rare, PMe3-promoted exchange with its bis(alkylidene) tautomer (Me3SiCH2)2W(=CHSiMe3)2(PMe3) (4b). Thermodynamic studies of the exchange showed that 4b is favored and gave Keq and the enthalpy and entropy of the equilibrium: DeltaH degrees = -1.8(0.5) kcal/mol and DeltaS degrees = -1.5(1.7) eu. Kinetic studies of the alpha-H migration between 4a and 4b by variable-temperature NMR gave rate constants k1 and k-1 for the reversible reactions and activation enthalpies and entropies: DeltaH1 = 16.2(1.2) kcal/mol and DeltaS1 = -22.3(4.0) eu for the forward reaction (4a --> 4b); DeltaH2 = 18.0(1.3) kcal/mol and DeltaS2 = -20.9(4.3) eu for the reverse reaction (4b --> 4a). Ab initio calculations at the B3LYP level revealed that PMe3 binds with the bis(alkylidene) tautomer relatively more strongly than with the alkylidyne tautomer and thus stabilizes the bis(alkylidene) tautomer.  相似文献   

6.
The observation of very long lifetimes of the metastable states of two cobalt-dioxolene complexes undergoing photoinduced and high T(c) thermally-induced valence tautomer interconversion opens new research perspectives.  相似文献   

7.
A detailed investigation of a valence tautomeric (VT) transition for the new complex [Co(III)(3,5-DBCat)(3,5-DBSQ)(py)?]/[Co(II)(3,5-DBSQ)?(py)?] (1) is reported, where 3,5-DBCatH? is 3,5-di-tert-butyl-catechol, 3,5-DBSQH is 3,5-di-tert-butyl-semiquinone and py is pyridine. Complex 1 exists as a mixture of the two valence tautomers, with the relative proportion of each depending on the external conditions. Three differently solvated forms of the complex have been synthesized and variable temperature structural and magnetic investigations of one of these, 1·0.5py, reveals that this compound undergoes a thermally-induced VT transition from the [Co(III)(3,5-DBCat)(3,5-DBSQ)(py)?] tautomer at temperatures below 150 K to a 1 : 1 mixture of the two tautomers at temperatures above 300 K. The VT transition may also be photo-induced at 9 K, affording a similar mixture of the two tautomers. In both cases the incomplete transition is attributed to the presence of π-π stacking interactions between the pyridine molecules of solvation and one of the two crystallographically independent complex molecules, which inhibits the expansion of this molecule that would accompany a VT transition. Studies on alternatively solvated forms 1·2MeCN and 1·1.67hexane also suggest a significant dependence of the VT transition on solvation-induced packing effects and/or intermolecular interactions.  相似文献   

8.
A valence-type anion of the canonical tautomer of uracil has been characterized using explicitly correlated second-order Moller-Plesset perturbation theory (RI-MP2-R12) in conjunction with conventional coupled-cluster theory with single, double, and perturbative triple excitations. At this level of electron-correlation treatment and after inclusion of a zero-point vibrational energy correction, determined in the harmonic approximation at the RI-MP2 level of theory, the valence anion is adiabatically stable with respect to the neutral molecule by 40 meV. The anion is characterized by a vertical detachment energy of 0.60 eV. To obtain accurate estimates of the vertical and adiabatic electron binding energies, a scheme was applied in which electronic energy contributions from various levels of theory were added, each of them extrapolated to the corresponding basis-set limit. The MP2 basis-set limits were also evaluated using an explicitly correlated approach, and the results of these calculations are in agreement with the extrapolated values. A remarkable feature of the valence anionic state is that the adiabatic electron binding energy is positive but smaller than the adiabatic electron binding energy of the dipole-bound state.  相似文献   

9.
T-shaped 14 valence electron (eta2-L)PtMe+ (based on DFT geometry optimization, L = [2.1.1]-2,6-pyridinophane) reacts with benzene to give (eta3-L) PtIV(Ph)2H+ and methane; the latter cation is in thermal equilibrium with the N-protonated PtII tautomer (eta2-L-H)Pt(Ph)2+, and these complexes react with ethane or cyclopentane to produce benzene and (L)PtH(olefin)+.  相似文献   

10.
[reaction: see text] Dicobalt octacarbonyl [Co(2)(CO)(8)] in acetonitrile at 75 degrees C triggers the cleavage of the N-O bond of 4-isoxazolines (1) to bring about the valence rearrangement to 2-acylaziridines (2). The isoxazolines were stable at 75 degrees C in the absence of the cobalt complex.  相似文献   

11.
Gas-phase metal ion affinities and optimized structures of RNA nucleic acid bases for the Ca+ were determined at a density functional level employing the hybrid B3LYP exchange correlation potential in connection with the 6-311+G(2df,2p) basis set. All the molecular complexes, obtained by the interaction between several low-lying tautomers of RNA nucleic acid and Ca+ on the different binding sites, were considered. For Cytosine, the most stable complex was obtained starting from the most stable tautomer of the free nucleic acid base tautomers. As to thymine, the bond energy of the ion with the most stable tautomer of the free nucleic acid base is the weakest among the three tautomer’s complexes, and that of the ion with least stable tautomer of the free nucleic acid base is the strongest . Uracil is similar to thymine. The two kinds of relation, bond energy and total energy for the complex, are in disagreement, as the metal affinities of RNA bases for the Ca+ depend on binding sites, and total energy of complex (Ca+-RNA base) relies on all atoms and their relative positions in the complex.  相似文献   

12.
Superexchange interactions in alkali fullerides AC(60) are derived for C(60) molecular ions separated by interstitial alkali-metal ions. We use a multiconfiguration approach which comprises the lowest molecular orbital states of the C(60) molecule and the excited s and d states of the alkali-metal atom A. Interactions are described by the valence bond (Heitler-London) method for a complex (C(60)-A-C(60))(-) with two valence electrons. The electronic charge transfer between the alkali-metal atom and a neighboring C(60) molecule is not complete. The occupation probability of excited d and s states of the alkali atom is not negligible. In correspondence with the relative positions of the C(60) molecules and A atoms in the polymer crystal, we consider 180 degrees and 90 degrees (angle) superexchange pathways. For the former case the ground state is found to be a spin singlet separated from a triplet at approximately 20 K. For T<20 K there appear strong spin correlations for the 180 degrees superexchange pathway. The results are related to spin lattice relaxation experiments on CsC(60) in the polymerized and in the quenched cubic phase.  相似文献   

13.
Hydrogen bond complex stability between adenine (A) and hydrogen bond equivalents of uracil: 2-pyridone derivatives (UX X2O) and 3-oxo-1,2,6-thiadiazine-1,1-dioxide derivatives (UX SO2) was studied, and as the result, the hydrogen bond energy of UX X2O-A and a complex of UXX SO2-A, was about 1.5 kcal/mol more stable than that of the corresponding adenine-uracil derivatives complex, respectively. The energy difference between the imide tautomer and enol tautomer was smaller than those of uracil derivatives. UF SO2 can form a stable complex with A, and its imide tautomer is stable.  相似文献   

14.
A study of the hydrogen-bonding and proton transfer reactions of the ground and excited states of harmane (1-methyl-9H-pyrido/3,4-b/indole) and its N 9-methyl derivative with 2,2,2-trifluoroethanol in cyclohexane is reported. Spectral measurements (UV–visible, Fourier trans-form IR, steady-state and time-resolved fluorescence) show the formation of fluorescent ground-state hydrogen-bonded complexes. The results have been interpreted assuming a tautomeric equilibrium between a 1:1 hydrogen-bonded complex and its 1:2 proton transfer tautomer (hydrogen-bonding ion pair). Upon excitation to its singlet excited state, the proton transfer tautomer of harmane reacts with an additional 2,2,2-trifluoroethanol molecule to give a zwitterionic exciplex, which fluoresces at longer wavelength.  相似文献   

15.
Anionic states of guanine, which is the only nucleic acid base of which the anions have not yet been studied in either photoelectron spectroscopic (PES) or Rydberg electron transfer (RET) experiments, have been characterized for the four most stable tautomers of neutral guanine using a broad spectrum of electronic structure methods from the density functional theory, with the B3LYP exchange-correlation functional, to the coupled-cluster method, with single, double, and perturbative triple excitations. Both valence and dipole-bound anionic states were addressed. We identified some of the difficulties facing future PES or RET experiments on the anion of guanine. Even if guanine is successfully transferred to the gas phase without thermal decomposition, it is critical to have the canonical amino-oxo (G) and both amino-hydroxy (GH and GHN7H) tautomers in the beam, not only the most stable, a noncanonical, amino-oxo tautomer (GN7H), as the latter does not support an adiabatically bound anionic state. We also suggested a scheme for enrichment of gas-phase guanine with the canonical tautomer, which is not the most stable in the gas phase, but which is of main interest due to its biological relevance. The tautomers G, GN7H, and GHN7H support vertically bound valence anionic states with the CCSD(T) value of vertical detachment energy of +0.58, +0.21, and +0.39 eV, respectively. These anionic states are, however, adiabatically unbound and thus metastable. The vertical electronic stability of these valence anionic states is accompanied by serious "buckling" of the molecular skeleton. The G and GHN7H tautomers support dipole-bound states with the CCSD(T) values of adiabatic electron affinity of 65 and 36 meV, respectively. A contribution from higher-than-second-order correlation terms represents, respectively, 48 and 68% of the total vertical electron detachment energy determined at the CCSD(T) level.  相似文献   

16.
The very rapid benzene oxide/oxepin equilibrium plays an important role in the metabolism of benzene by cytochrome P450. Although it is the benzene oxide valence tautomer that is attacked by nucleophiles and rearranges to phenols in acidic media, it is the oxepin valence isomers that suffer one-electron oxidation. However, some other reactions are more competitive and also furnish useful illustrations of the Curtin–Hammett principle. For example, while oxepin and benzene oxide are comparable in energy, the only reaction product with maleic anhydride is the Diels–Alder adduct with benzene oxide. Density function theory (B3LYP/6-31G*) calculations are employed for study of three sets of benzene oxide/oxepin equilibria and Diels–Alder reactions with maleic anhydride and dimethylazodicarboxylate as well as epoxidation by dioxirane. Comparisons are made between theory and published experimental data.  相似文献   

17.
Besides all their conformational degrees of freedom, drug‐like molecules and natural products often also undergo tautomeric interconversions. Compared to the huge efforts made in experimental investigation of tautomerism, open and free algorithmic solutions for prototropic tautomer generation are surprisingly rare. The few freely available software packages limit their output to a subset of the possible configurational space by sometimes unwanted prior assumptions and complete neglection of ring‐chain tautomerism. Here, we describe an adjustable fully automatic tautomer enumeration approach, which is freely available and also incorporates the detection of ring‐chain variants. The algorithm is implemented in the MolTPC framework and accessible on SourceForge. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
A detailed study of the “blocked” amino–imino tautomers derived from N‐acridine‐substituted 2‐aminobenzothiazole—and their effect on the nonlinear optical response—is presented. The synthesis, characterization, and nonlinear optical properties of these frozen tautomers, namely, N‐methyl‐N‐(2‐nitroacridin‐6‐yl)‐2‐aminobenzothia‐zole and 3‐methyl‐N‐(7‐nitroacridin‐3‐yl)‐2‐iminobenzothiazole, are reported. A theoretical model based on valence–bond theory is also proposed and used to analyze the effects of the nuclear configuration corresponding to each frozen tautomer structure. In the present case, the aromatic form and the allylic‐anion‐like system of the ? N? C? N? group inherent to each isomer are crucial for understanding and analyzing the different responses of each “blocked” tautomer.  相似文献   

19.
Hydrazine is one of the most commonly used entraining agents to penetrate kaolinite, yet the mechanism of intercalation of kaolinite by hydrazine is still in debate. The objectives of this study are to investigate the possible molecular configurations and orientations of hydrazine in the interlayer of kaolinite and the configuration changes induced by water molecules. Water molecules increased the intercalation rate and caused the expansion of the intercalation complex from 0.96 to 1.03 nm. The kinetic effect was likely the result of breaking the self-associations of hydrazine molecules and releasing more "free" hydrazine molecules for the intercalation. H-bonding caused large red shifts of the inner surface OH stretching bands from 3695 to 3626 cm(-1) in the 0.96-nm kaolinite hydrazine intercalation (KHI) complex and to 3570 and 3463 cm(-1) in the 1.03-nm KHI complex. The NH stretching bands of the hydrazine molecules in the KHI complexes became sharper and blue-shifted more than 20 cm(-1) compared with the free liquids. The symmetric NH vibrations at 3365 and 3310 cm(-1), and the NN vibration at 1092 cm(-1) became infrared inactive in the 0.96-nm KHI complex. The frequency of the SiO bands of the kaolinite in the 1.03-nm KHI complex was slightly lower than in the 0.96-nm KHI complex (5 cm(-1) shift). These IR band changes implied that hydrazine molecules have different configurations in the complexes: hydrazine molecules had an eclipsed form in the interlayer of the 0.96-nm KHI complex. The eclipsed configuration has a dipole moment of 3.31 D, which is higher than the gauche form (1.83-1.90 D). The molecule was oriented with the NN bond parallel or nearly parallel to the (001) surface of the mineral and the four H atoms of each hydrazine molecule reacted with the basal siloxane surface. When a suitable amount of water was present, it promoted the configuration change of the hydrazine molecules from the eclipsed form to the common gauche form. This gauche form was stabilized by transforming to a more polarized NH3NH tautomer structure (5.4 D). To promote an optimal interaction between hydrazine and the mineral surface, the NN bond of the hydrazine was tilted about 30 degrees from the (001) plane and caused the intercalation complex to expand from 0.96 to 1.03 nm. The eclipsed form and the tautomer were stabilized by the asymmetric interlayer environment of kaolinite. The two proposed models and reaction mechanisms match the high dipole moment requirement as found for other entraining agents. Further investigation is needed to confirm the exact configuration of hydrazine molecules and whether or not the tautomer exists.  相似文献   

20.
DFT and ab initio theoretical methods were used to calculate the relative stability of tautomers in the methimazole (MMI). The calculations show that the thione form of MMI 1 is more stable than the thiol tautomer in good agreement with the experimental results. The DFT and ab initio calculations were also used to determine the stability of MMI–I2 complexes. All methods suggest that the methimazole in the MMI–I2 complex exists almost exclusively as the thione tautomer. The Gibbs free energy difference between planar and perpendicular forms of thione tautomer of MMI–I2 complex indicates that the planar form is the predominant complex. The counterpoise corrected Gibbs free energy also shows that the MMI–I2(plan.) complex is more stable than the MMI–I2(perp.) complex. These predictions are in good agreement with the experimental results. By using the natural bond orbital (NBO) approach, the effects of charge transfer interactions on the stability of MMI–I2 complexes were investigated. The LP3(S)→σ*(I–I) and LP3(I)→σ*(N–H) charge transfer interactions may be very important in the stability of the planar form. The results show that the LP3(S)→σ*(I–I) charge transfer interaction causes a greater increase in the σ*(I–I) antibond occupation number, and concomitantly, a greater increase in the corresponding I–I bond length in the planar complex with respect to the perpendicular complex. The LP3(S)→σ*(I–I) charge transfer interaction is assisted by NHI intermolecular hydrogen bonding. The atom in molecule (AIM) analysis shows that the charge density and its Laplacian at the SI bond critical point of the planar complex is greater than the perpendicular complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号