首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The melting of isothermally crystallized poly(vinylidene fluoride) (PVF2), produced in the intercrystalline spaces of poly(ethylene terephthalate) (PET) from its blends, showed a unique behavior: the melting temperature decreased with the increasing crystallinity of PVF2 (i.e., with increasing crystallization time) for PVF2 volume fractions of 0.64 and 0.51. The melting temperature of already crystallized PET also decreased as the PVF2 crystallization progressed and the isothermal crystallization temperature of PVF2 increased. Separate reasons were proposed to account for these behaviors. The equilibrium melting temperatures of PVF2 in the blends, measured by the Hoffman–Weeks extrapolation procedure, were used to calculate the polymer–polymer interaction parameter (χ21); only the noncrystallized portion of PET contributing to the mixed amorphous phase was considered. The χ21value (−1.75) was lower than χ12 (−0.14), calculated from the melting temperature depression of PET. However, when they were normalized to the unit volumes of the respective components, the two values were found to be the same. The crystallization rate of PVF2 decreased with an increasing volume fraction of PET in the blend. The Avrami exponent increased for the volume fraction of PVF2 (0.77) and then progressively decreased with an increasing volume fraction of PET. A gradual change in the nature of the regime transition from regime II/regime I to regime III/regime II with increasing PET concentration was observed. The value of the chain-extension factor of PVF2 significantly increased with an increase in the PET concentration in the blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2215–2227, 2004  相似文献   

2.
Nonionic poly(oxyethylene) polymers having a diphosphonate group at one chain end strongly adsorb onto CaCO3 particles. The main consequence is a considerable lowering of the viscosity of concentrated slurries. This effect occurs because of the break up and redispersion of aggregates of flocculated CaCO3 particles by the polymer adsorption. The mechanism of colloidal stabilization is steric, the particles becoming uncharged as the polymer adsorbs at their surface. As a consequence, the colloidal suspensions remain stable and fluid at high volume fractions and at high ionic strengths. On the other hand, because of the strong affinity of these polymers for CaCO3 surfaces, the larger part of the polymer is adsorbed until the coverage of the particles reaches completion. The easy to handle polymer-to-solid weight ratio can then be used as a formulation parameter. The depletion flocculation by the nonadsorbed polymer is avoided. Received: 12 March 1999 Accepted in revised form: 2 July 1999  相似文献   

3.
The piezoelectric effect in films of polyvinylidene fluoride (PVF2) is investigated using optical and ultrasonic detection techniques. From the analysis of the vibrational resonance frequencies of a freely suspended film we conclude that the polarization induced in PVF2 is inhomogeneous across the volume of the sample. Poling the foils in a sandwich configuration or using blocking electrodes, we can clearly demonstrate that the piezoelectric effect in PVF2 originates from the positive metal electrode. Monitoring the time dependence of the piezoelectric effect during the poling process, a fast and slow component are observed. Using a blocking electrode, however, the same dynamical poling behavior is found only if the contacting metal electrode is positive. In view of these observations, which clearly demonstrate the importance of the metal–polymer interface for the strong piezoelectricity of PVF2, the existing theoretical models, based on the bulk properties of the polymer, are critically reviewed.  相似文献   

4.
Poly(vinylidene fluoride) (PVF2) is currently used to form piezoelectric films. The PVF2 molecule can exist in more than one stable conformation and it has electrically polar groups making the polymer amenable to the electrification processes involved in the formation of the piezoelectric film. The two crystalline forms of PVF2 are distinguishable by far-infrared spectroscopy. Polarized far-infrared spectra (1000-50 cm?1) of uniaxially oriented PVF2 show changes in the strong perpendicular dichroism in a number of absorptions before and after being made piezoelectric. The dichroism is attributed to a structural rearrangement from a staggered trans-gauche-trans-gauché conformation to a planar zig zag conformation. In the latter conformation the permanent dipoles are oriented approximately at right angles to the surfaces of the film and result in an electrically polarized film.  相似文献   

5.
Poly(vinylidene fluoride)(PVF2) produces thermoreversible gels with alkyl diesters of general formula (CH2)n (COOEt)2 as well as with camphor, a naturally occurring ketone. These gels containing polymer-solvent intercalates yield multiporous materials when subjected to controlled solvent removal techniques. The micro and meso pores are attributed to polymer-solvent complexation while the macro pores are formed as a result of removal of the solvent trapped in the fibrillar network. PVF2 –diethyl azelate (DEAZ, n = 6) and PVF2 -camphor gels produce porous polymer network when dried by cyclohexane leaching. FESEM images exhibit porous network structures with fibrillar morphology. Mercury intrusion porosimetry (MIP) shows presence of pores having diameter in the range 4 nm–400µm for both the systems. The BJH pore size distribution curves for both systems confirm the presence of mesoporosity. The HK pore size distribution plots indicate that micropores are also created and it also puts evidence of single molecule solvent intercalation between the PVF2 strands. The hysteresis between the extrusion and the intrusion curves indicates the presence of channel type/ink-bottle type structure in these systems.  相似文献   

6.
In the Polymer Electroprocessing Laboratory at Rutgers University, we have discovered that the odd-numbered nylons constitute the second known class of ferroelectric polymers1–3, and that polarized films exhibit piezoelectric properties similar to poly(vinylidene fluoride) (PVF2) and copolymers of PVF2 and trifluoroethylene (PVF2/PVF3). A study of a series of these polymers including nylon 11, nylon 9, nylon 7 and nylon 5 showed that the remanent polarization produced in quenched, cold-drawn films was a linear function of polymer dipole density4. The highest remanent polarization produced was that of nylon 5, the value attained (P1=125mC/m2) being approximately 2.5 times that of PVF2. We also discovered that (unlike PVF2 or PVF2/PVF3) the remanent polarization could be stabilized to elevated temperatures (close to the polymer melting point). For nylon 5, the remanent polarization and piezoelectric response was stable to over 250°C5. We showed that the hydrogen-bonded sheet structure in nylon 11 for quenched cold-drawn films was parallel to the plane of the film, and that after application of high electric fields the hydrogen-bonded sheet structure was rotated 90° to an orientation perpendicular to the plane of the film3. A detailed X-ray diffraction study of the effects of humidity and electroprocessing on the switching behavior of nylon 5, nylon 7 and nylon 11 films was carried out5. The piezoelectric and pyroelectric response6 of these films was also determined. The different switching mechanisms observed and the measured piezoelectric and pyroelectric properties will be presented and discussed.  相似文献   

7.
A combined optical and electron microscopical study has been carried out of the crystallization habits of poly(vinylidene fluoride) (PVF2) when it is crystallized from blends with noncrystallizable poly(ethyl acrylate) (PEA). The PVF2/PEA weight ratios were 0.5/99.5,5/95, and 15/85. Isothermal crystallization upon cooling the blends from the single-phase liquid region was carried out in the range 135–155°C, in which the polymer crystallizes in the α-orthorhombic unit cell form. The 0.5/99.5 blend yielded multilayered and planar lamellar crystals. The lamellae formed at low undercoolings were lozenge shaped and bounded laterally by {110} faces. This habit is prototypical of the dendritic lateral habits exhibited by the crystals grown from the same blend at high undercoolings as well as by the constituent lamellae in the incipient spherulitic aggregates and banded spherulites that formed from the 5/95 and the 15/85 blends, respectively. In contrast with the planar crystals grown from the 0.5/99.5 blend, the formation of the aggregates grown from the 5/95 blend is governed by a conformationally complex motif of dendritic lamellar growth and proliferation. The development of these aggregates is characterized by the twisting of the orientation of lamellae about their preferential b-axis direction of growth, coupled with a fan-like splaying or spreading of lamellae about that axis. The radial growth in the banded spherulites formed from the 15/85 blend is governed by a radially periodic repetition of a similar lamellar twisting/fan-like spreading growth motif whose recurrence corresponds to the extinction band spacing. This motif differs in its fan-like splaying component from banding due to just a helicoidal twisting of lamellae about the radial direction. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
This paper describes a strategy that combines physical templating and capillary forces to assemble monodispersed spherical colloids into uniform aggregates with well-controlled sizes, shapes, and structures. When an aqueous dispersion of colloidal particles was allowed to dewet from a solid surface that had been patterned with appropriate relief structures, the particles were trapped by the recessed regions and assembled into aggregates whose structures were determined by the geometric confinement provided by the templates. We have demonstrated the capability and feasibility of this approach by assembling polystyrene beads and silica colloids (> or =150 nm in diameter) into complex aggregates that include polygonal or polyhedral clusters, linear or zigzag chains, and circular rings. We have also been able to generate hybrid aggregates in the shape of HF or H2O molecules that are composed of polymer beads having different diameters, polymer beads labeled with different organic dyes, and a combination of polymeric and inorganic beads. These colloidal aggregates can serve as a useful model system to investigate the hydrodynamic and optical scattering properties of colloidal particles having nonspherical morphologies. They should also find use as the building blocks to generate hierarchically self-assembled systems that may exhibit interesting properties highly valuable to areas ranging from photonics to condensed matter physics.  相似文献   

9.
The incorporation of poly(1,4‐butylene adipate) (PBA) and its crystallization behavior within poly(vinylidenefluoride) (PVF2) spherulites in miscible PVF2/PBA blends have been further studied with small‐angle X‐ray synchrotron scattering (SAXS). The incorporation of PBA into the PVF2 interlamellar region was found to be dependent on the PVF2 crystallization conditions. In our previous work, where the blends were crystallized by a one‐step quenching process directly from 190 (a single‐phase region) to 20 °C (a three‐phase region), the transition from PBA inclusion in the PVF2 interlamellar region to interlamellar exclusion occurred at a PBA weight fraction of ∼ 0.5. In this case, where the blends were first quenched from 190 (a single‐phase region) to 130 °C (a two‐phase region) and then further quenched to 20 °C (a three‐phase region), the transition occurred at a PBA weight fraction of less than 0.3. That is, when a blend is crystallized under different conditions, different amounts of the PBA component are incorporated into the PVF2 interlamellar phase. The thickness of the PVF2 interlamellar phase, in turn, may affect the PBA crystalline structure in the interlamellar region. Time‐resolved SAXS was used to probe the crystallization dynamics of both PVF2 and PBA components in a blend containing 60 wt % PBA. The blend was quenched from the single‐phase region at 190 to 130 °C to crystallize the PVF2 component and was then further quenched to 20 °C to crystallize the PBA component. This study, together with our earlier results, shows that the time dependence of the PVF2 crystallization rate and crystalline lamellar thickness is a function of the PBA content in the blend. The glass‐transition temperature of the blend and the PBA diffusion process are the two dominant factors that control the PVF2 crystallization dynamics. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2296–2308, 2000  相似文献   

10.
以扩散模型(Ds(γ)=D0×sγ)和凝聚模型(Pij(σ)=P0×(i×j)σ)为基础,对胶体体系随时间的演变、团簇大小分布及其标度关系、团簇的重均大小S(t)的变化规律以及模型对最终分形维数的影响四个角度进行了比较研究,发现扩散指数γ0和凝聚概率指数σ0对胶体的凝聚动力学过程有相似的影响.本文在较宽的γ和σ取值范围内,对胶体的凝聚动力学进行了模拟研究,对慢速凝聚向快速凝聚的转化机理作了定量分析,并进一步分析了在团簇-团簇凝聚(CCA)模型下,得到类似扩散置限凝聚(DLA)模型的凝聚体的物理意义,结果表明:(1)γ0代表了体系中团簇或单粒做"定向运动"而非无规则的布朗运动的情况.这种"定向运动"的推动力可能来自于大团簇产生的强"长程范德华力"、"电场力"等,或来自于体系边界处的外力场的作用.(2)当σ0时,体系成为先快后慢的慢速凝聚,这可能对应大团簇为一排斥中心,即胶体颗粒存在"排斥力场"的现象.(3)证实了团簇的重均大小在凝聚过程的早期按指数规律增长,而后期按幂函数规律增长的实验现象.模拟研究还表明,胶体体系的凝聚动力学过程,在σ0时是一个存在正反馈机制的非线性动力学过程,而在σ0时则体现出负反馈的特征.  相似文献   

11.
The ferroelectric and piezoelectric properties of a new class of polymer ferroelectric and piezoelectric materials, nylon 11/polyvinylidene fluoride (PVF2) bilaminate films, prepared by a co-melt-pressing method, is presented. The bilaminate films exhibit typical ferroelectric D-E hysteresis behavior with a remanent polarization, Pr, of about 75 mC/m2, which is higher than the value of 52 mC/m2 observed for PVF2 or nylon 11 films measured under the same conditions. The coercive field, Ec, of the bilaminate films is ~ 78 MV/m, which is higher than that of either PVF2 or nylon 11 films. Measurements of the temperature dependence of the piezoelectric strain coefficient, d31, and the piezoelectric stress coefficient, e31, were also carried out. The bilaminate films exhibit a piezoelectric strain coefficient, d31, of 41 pC/N at room temperature, which is significantly higher than the PVF2 films (25 pC/N) and the nylon 11 films (3.1 pC/N). When the temperature is increased to 110°C, d31 of the bilaminate films reaches a maximum value of 63 pC/N, more than five times that of PVF2 (11 pC/N) and more than four times that of nylon 11 (14 pC/N) at the same temperature. The piezoelectric stress coefficient, e31, of the bilaminate films shows a value of 109 mC/m2 at room temperature, almost twice that of the PVF2 films (59 mC/m2) and about 18 times that of the nylon 11 films (6.2 mC/m2). Measurement of the temperature dependence of the hydrostatic piezoelectric coefficient, dh, of the bilaminate films also shows an enhancement with respect to the individual components, PVF2 and nylon 11. ©1995 John Wiley & Sons, Inc.  相似文献   

12.
This paper examines the role of polymer interdiffusion or interpenetration along and across a boundary of two compatible but dissimilar polymers in controlling interfacial adhesion in the interface region (interphase). The effect of interphase adhesion on the mechanical properties as well as the deformation and fracture behavior of sandwich laminates of poly(methylmethacrylate) (PMMA) and poly(vinylidene) fluoride (PVF2) have been studied. The interphase has been characterized using microscopy (optical, transmission, and scanning electron), dynamic mechanical spectroscopy, and x-ray microanalysis. Conditions of multiple crazing/fracture in the brittle phase (PMMA) and shear yielding in the ductile phase (PVF2) are discussed. Scanning electron micrographs confirm these deformation modes in PMMA-PVF2 sandwich composite laminates.  相似文献   

13.
A previously published new solid-state nuclear magnetic resonance (NMR) method is applied to the interdiffusion of poly(methacrylate) (PMMA) and poly(vinylidene fluoride) (PVF2) above their Tg. Via a variation of the cross-polarization technique magnetization is transferred from protons to fluorines. When this magnetization is made to disappear at the fluorine sites, only those protons that are distant from fluorines greater than the distance over which cross-polarization functions will retain their magnetization. In this way we detect the fraction of PMMA near (ca. 20 Å) PVF2. Starting from sheets of PMMA and PVF2, which are then heated at 190°C for a variable time, and applying the above technique, we can determine the fractions of PMMA and PVF2 that have diffused within a distance of a few Å of each other. The intrinsic diffusion coefficients of PMMA and PVF2 determined from such experiments compare well with literature data. Initial attempts to fit the experimental data suggest that the concentration dependence of the diffusion coefficients cannot be neglected. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
Anisometrical colloidal iron(III)hydroxide particles and particle aggregates were incorporated in elastic poly(vinyl acetate) networks. A novel method has been developed to fix the colloidal structure of deformed samples. Digitalized image analysis has been applied in order to evaluate the micrographs. The rod-like particles allow for studying the local deformation and orientation due to uniaxial and triaxial deformations. The density correlation function as well as the micrographs show that the structure of aggregates is not influenced by the strain. Due to strong attractive interactions between the colloidal particles the developing strain is not enough to destroy the aggregate structure. The orientation behavior of the model filled networks can be satisfactorily described by using the affinity principle.  相似文献   

15.
Poly(vinylidene fluoride) (PVF2) produces thermoreversible gels in a series of diesters. The polymer-solvent complexation occurred for intermittent number of carbon atoms n ⩾ 2 and the enthalpy of complexation increased with increasing n. The gels were dried by replacing the diesters with low boiling solvent like cyclohexane (bp. 80 °C) and methylcyclohexane (bp. 99 °C). The porosity of the dried gels was measured using Poremaster-60. For PVF2-DEAZ gel meso and macro porosity have been observed. The former pore dimensions have been attributed for polymer-solvent complexation while the macroporosity has been attributed for caging of solvent between the PVF2 fibrils The porosity measured from nitrogen adsorption isotherms using BJH method indicate presence of minimum pore diameter of 3.8 nm for the 10% dried gel of PVF2.  相似文献   

16.
Colloidal silica sols having a narrow dispersity, prepared by the ammonia-catalyzed hydrolysis of Si(OEt)4, were functionalized by reaction with vinyltrimethoxysilane (H2C?CHSi(OMe)3) or methacryloxypropyltri-methoxysilane (H2C?CMeCO2(CH2)3Si(OMe)3. The electrostatically stabilized colloids were stable in acetone and dimethylformamide. Radical polymerization of methyl methacrylate in the presence of either type of functionalized particle led to particles with surfacegrafted poly(methyl methacrylate) (PMMA). The efficiency of polymer grafting was shown to be related to the nature of the functional groups. The PMMA-modified, sterically stabilized particles were colloidally stable in solvents ranging from acetone to toluene but unstable in water or hexane. The vinyl functionalized silica was alternatively reacted with HSiMe2-terminated silicones in a platinum-catalyzed hydrosilylation. The resultant sterically stabilized particles were stable in hexane. It was thus possible to convert the unmodified silica to organo-functionalized silica and finally to polymer-grafted silica while maintaining colloidal stability. During the course of these modifications, the mechanism for colloidal stability changed from electrostatic to steric stabilization.  相似文献   

17.
 Interaction between flexible-chain polymers and small (nanometric) colloidal particles is studied by Monte Carlo simulation using two-dimensional and three-dimensional lattice models. Spatial distribution of colloidal particles and conformational characteristics of chains in a semidilute solution are considered as a function of the segment adsorption energy, ɛ. When adsorption is sufficiently strong, it induces effective attraction of polymer segments, which results in contraction of macromolecular coils. The strongly adsorbing polymer chains affect the equilibrium spatial distribution of the colloidal particles. The average size of colloidal aggregates <m> exhibits a nontrivial behavior: with ɛ increasing, the value of <m> first decreases and then begins to grow. The adsorption polycomplex formed at strong adsorption exhibits a mesoscopic scale of structural heterogeneity. The results of computer simulations are in a good agreement with predictions of the analytic theory [P.G. Khalatur, L.V. Zherenkova and A.R. Khokhlov (1997) J Phys II (France) 7:543] based on the integral RISM equation technique. Received: 4 August 1997 Accepted: 16 April 1998  相似文献   

18.
Poly (vinylidene fluoride) (PVF2) produces thermoreversible gel in camphor when quenched to 25°C from the melt under sealed condition. The SEM micrograph of dried PVF2/camphor gel (Wequation/tex2gif-inf-3.gif= 0.25) indicates presence of fibrillar network structure and the gels at different composition shows reversible first order phase transition. The phase diagram of the gel suggest the formation of a polymer- solvent complex. The melting enthalpy gives a stoichiometric composition of the complex at Wequation/tex2gif-inf-5.gif= 0.25. This corresponds to a molar ratio of PVF2 monomer/camphor ≈ 4/5. Temperature-dependent synchroton experiments further support the conclusions derived from the phase diagram.  相似文献   

19.
Titanium dioxide (TiO2) nanoparticles were dispersed via solution processing in poly(1-trimethylsilyl-1-propyne) (PTMSP) to form nanocomposite films. Nanoparticle dispersion was investigated using atomic force microscopy and transmission electron microscopy. At low-particle loadings, nanoparticles were dispersed individually and in nanoscale aggregates. At high-particle loadings, some nanoparticles formed micron-sized aggregates. The gas transport and density exhibited a strong dependence on nanoparticle loading. At low-TiO2 loadings, the composite density was similar to or slightly higher than that predicted by a two-phase additive model. However, at particle loadings exceeding approximately 7 nominal vol.%, the density was markedly lower than predicted, suggesting that the particles induced the creation of void space within the nanocomposite. For example, when the TiO2 nominal volume fraction was 0.35, the polymer/particle composite density was 40% lower than expected based on a two-phase additive model for density. At low-nanoparticle loading, light gas permeability was lower than that of the unfilled polymer. At higher nanoparticle loadings, light gas permeability (i.e., CO2, N2, and CH4) increased to more than four times higher than in unfilled PTMSP. At most, selectivity changed only slightly with particle loading.  相似文献   

20.
EPR and matrix ENDOR spectra have been examined for polyenyl radicals in γ-irradiated PVF, PVF2, PVC, and PMMA polymers. Proton matrix ENDOR is observed for all four polymers, and fluorine matrix ENDOR for PVF and PVF2. By line shape analysis of the ENDOR spectra obtained under comparable conditions, delocalization diameters for the unpaired electron of the polyenyl radical in each polymer are obtained. These diameters indicate extensive delocalization over 5–7 carbon double bonds for the polyenyl radicals investigated. It is suggested that these conjugated and crosslinked radiation products account for the observed nondevelopment of electron beam resist PMMA material at high radiation charge densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号