首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We establish a new theorem of existence (and uniqueness) of solutions to the Navier-Stokes initial boundary value problem in exterior domains. No requirement is made on the convergence at infinity of the kinetic field and of the pressure field. These solutions are called non-decaying solutions. The first results on this topic dates back about 40 years ago see the references (Galdi and Rionero in Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980; Knightly in SIAM J. Math. Anal. 3:506–511, 1972). In the articles Galdi and Rionero (Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980) it was introduced the so called weight function method to study the uniqueness of solutions. More recently, the problem has been considered again by several authors (see Galdi et al. in J. Math. Fluid Mech. 14:633–652, 2012, Quad. Mat. 4:27–68, 1999, Nonlinear Anal. 47:4151–4156, 2001; Kato in Arch. Ration. Mech. Anal. 169:159–175, 2003; Kukavica and Vicol in J. Dyn. Differ. Equ. 20:719–732, 2008; Maremonti in Mat. Ves. 61:81–91, 2009, Appl. Anal. 90:125–139, 2011).  相似文献   

2.
We study a class of Steffensen-type algorithm for solving nonsmooth variational inclusions in Banach spaces. We provide a local convergence analysis under ω-conditioned divided difference, and the Aubin continuity property. This work on the one hand extends the results on local convergence of Steffensen’s method related to the resolution of nonlinear equations (see Amat and Busquier in Comput. Math. Appl. 49:13–22, 2005; J. Math. Anal. Appl. 324:1084–1092, 2006; Argyros in Southwest J. Pure Appl. Math. 1:23–29, 1997; Nonlinear Anal. 62:179–194, 2005; J. Math. Anal. Appl. 322:146–157, 2006; Rev. Colomb. Math. 40:65–73, 2006; Computational Theory of Iterative Methods, 2007). On the other hand our approach improves the ratio of convergence and enlarges the convergence ball under weaker hypotheses than one given in Hilout (Commun. Appl. Nonlinear Anal. 14:27–34, 2007).  相似文献   

3.
We present new sufficient conditions for the semilocal convergence of Newton’s method to a locally unique solution of an equation in a Banach space setting. Upper bounds on the limit points of majorizing sequences are also given. Numerical examples are provided, where our new results compare favorably to earlier ones such as Argyros (J Math Anal Appl 298:374–397, 2004), Argyros and Hilout (J Comput Appl Math 234:2993-3006, 2010, 2011), Ortega and Rheinboldt (1970) and Potra and Pták (1984).  相似文献   

4.
A local as well as a semilocal convergence analysis for Newton–Jarratt–type iterative method for solving equations in a Banach space setting is studied here using information only at a point via a gamma-type condition (Argyros in Approximate Solution of Operator Equations with Applications, [2005]; Wang in Chin. Sci. Bull. 42(7):552–555, [1997]). This method has already been examined by us in (Argyros et al. in J. Comput. Appl. Math. 51:103–106, [1994]; Argyros in Comment. Mat. XXIII:97–108, [1994]), where the order of convergence four was established using however information on the domain of the operator. In this study we also establish the same order of convergence under weaker conditions. Moreover we show that all though we use weaker conditions the results obtained here can be used to solve equations in cases where the results in (Argyros et al. in J. Comput. Appl. Math. 51:103–106, [1994]; Argyros in Comment. Mat. XXIII:97–108, [1994]) cannot apply. Our method is inverse free, and therefore cheaper at the second step in contrast with the corresponding two–step Newton methods. Numerical Examples are also provided.  相似文献   

5.
We obtain an improved Sobolev inequality in \(\dot{H}^s\) spaces involving Morrey norms. This refinement yields a direct proof of the existence of optimizers and the compactness up to symmetry of optimizing sequences for the usual Sobolev embedding. More generally, it allows to derive an alternative, more transparent proof of the profile decomposition in \(\dot{H}^s\) obtained in Gérard (ESAIM Control Optim Calc Var 3:213–233, 1998) using the abstract approach of dislocation spaces developed in Tintarev and Fieseler (Concentration compactness. Functional-analytic grounds and applications. Imperial College Press, London, 2007). We also analyze directly the local defect of compactness of the Sobolev embedding in terms of measures in the spirit of Lions (Rev Mat Iberoamericana 1:145–201, 1985, Rev Mat Iberoamericana 1:45–121, 1985). As a model application, we study the asymptotic limit of a family of subcritical problems, obtaining concentration results for the corresponding optimizers which are well known when \(s\) is an integer (Rey in Manuscr Math 65:19–37, 1989, Han in Ann Inst Henri Poincaré Anal Non Linéaire 8:159–174, 1991, Chou and Geng in Differ Integral Equ 13:921–940, 2000).  相似文献   

6.
An augmented Lagrangian approach for sparse principal component analysis   总被引:1,自引:0,他引:1  
Principal component analysis (PCA) is a widely used technique for data analysis and dimension reduction with numerous applications in science and engineering. However, the standard PCA suffers from the fact that the principal components (PCs) are usually linear combinations of all the original variables, and it is thus often difficult to interpret the PCs. To alleviate this drawback, various sparse PCA approaches were proposed in the literature (Cadima and Jolliffe in J Appl Stat 22:203–214, 1995; d’Aspremont et?al. in J Mach Learn Res 9:1269–1294, 2008; d’Aspremont et?al. SIAM Rev 49:434–448, 2007; Jolliffe in J Appl Stat 22:29–35, 1995; Journée et?al. in J Mach Learn Res 11:517–553, 2010; Jolliffe et?al. in J Comput Graph Stat 12:531–547, 2003; Moghaddam et?al. in Advances in neural information processing systems 18:915–922, MIT Press, Cambridge, 2006; Shen and Huang in J Multivar Anal 99(6):1015–1034, 2008; Zou et?al. in J Comput Graph Stat 15(2):265–286, 2006). Despite success in achieving sparsity, some important properties enjoyed by the standard PCA are lost in these methods such as uncorrelation of PCs and orthogonality of loading vectors. Also, the total explained variance that they attempt to maximize can be too optimistic. In this paper we propose a new formulation for sparse PCA, aiming at finding sparse and nearly uncorrelated PCs with orthogonal loading vectors while explaining as much of the total variance as possible. We also develop a novel augmented Lagrangian method for solving a class of nonsmooth constrained optimization problems, which is well suited for our formulation of sparse PCA. We show that it converges to a feasible point, and moreover under some regularity assumptions, it converges to a stationary point. Additionally, we propose two nonmonotone gradient methods for solving the augmented Lagrangian subproblems, and establish their global and local convergence. Finally, we compare our sparse PCA approach with several existing methods on synthetic (Zou et?al. in J Comput Graph Stat 15(2):265–286, 2006), Pitprops (Jeffers in Appl Stat 16:225–236, 1967), and gene expression data (Chin et?al in Cancer Cell 10:529C–541C, 2006), respectively. The computational results demonstrate that the sparse PCs produced by our approach substantially outperform those by other methods in terms of total explained variance, correlation of PCs, and orthogonality of loading vectors. Moreover, the experiments on random data show that our method is capable of solving large-scale problems within a reasonable amount of time.  相似文献   

7.
For a system of polynomial equations, whose coefficients depend on parameters, the Newton polyhedron of its discriminant is computed in terms of the Newton polyhedra of the coefficients. This leads to an explicit formula (involving Euler obstructions of toric varieties) in the unmixed case, suggests certain open questions in general, and generalizes a number of similar known results (Gelfand et al. in Discriminants, resultants, and multidimensional determinants. Birkhäuser, Boston, 1994; Sturmfels in J. Algebraic Comb. 32(2):207–236, 1994; McDonald in Discrete Comput. Geom. 27:501–529, 2002; Gonzalez-Perez in Can. J. Math. 52(2):348-368, 2000; Esterov and Khovanskii in Funct. Anal. Math. 2(1), 2008).  相似文献   

8.
Hopf??s theorem on surfaces in ${\mathbb{R}^3}$ with constant mean curvature (Hopf in Math Nach 4:232?C249, 1950-51) was a turning point in the study of such surfaces. In recent years, Hopf-type theorems appeared in various ambient spaces, (Abresch and Rosenberg in Acta Math 193:141?C174, 2004 and Abresch and Rosenberg in Mat Contemp Sociedade Bras Mat 28:283-298, 2005). The simplest case is the study of surfaces with parallel mean curvature vector in ${M_k^n \times \mathbb{R}, n \ge 2}$ , where ${M_k^n}$ is a complete, simply-connected Riemannian manifold with constant sectional curvature k ?? 0. The case n?=?2 was solved in Abresch and Rosenberg 2004. Here we describe some new results for arbitrary n.  相似文献   

9.
We establish a connection between optimal transport theory (see Villani in Topics in optimal transportation. Graduate studies in mathematics, vol. 58, AMS, Providence, 2003, for instance) and classical convection theory for geophysical flows (Pedlosky, in Geophysical fluid dynamics, Springer, New York, 1979). Our starting point is the model designed few years ago by Angenent, Haker, and Tannenbaum (SIAM J. Math. Anal. 35:61–97, 2003) to solve some optimal transport problems. This model can be seen as a generalization of the Darcy–Boussinesq equations, which is a degenerate version of the Navier–Stokes–Boussinesq (NSB) equations. In a unified framework, we relate different variants of the NSB equations (in particular what we call the generalized hydrostatic-Boussinesq equations) to various models involving optimal transport (and the related Monge–Ampère equation, Brenier in Commun. Pure Appl. Math. 64:375–417, 1991; Caffarelli in Commun. Pure Appl. Math. 45:1141–1151, 1992). This includes the 2D semi-geostrophic equations (Hoskins in Annual review of fluid mechanics, vol. 14, pp. 131–151, Palo Alto, 1982; Cullen et al. in SIAM J. Appl. Math. 51:20–31, 1991, Arch. Ration. Mech. Anal. 185:341–363, 2007; Benamou and Brenier in SIAM J. Appl. Math. 58:1450–1461, 1998; Loeper in SIAM J. Math. Anal. 38:795–823, 2006) and some fully nonlinear versions of the so-called high-field limit of the Vlasov–Poisson system (Nieto et al. in Arch. Ration. Mech. Anal. 158:29–59, 2001) and of the Keller–Segel for Chemotaxis (Keller and Segel in J. Theor. Biol. 30:225–234, 1971; Jäger and Luckhaus in Trans. Am. Math. Soc. 329:819–824, 1992; Chalub et al. in Mon. Math. 142:123–141, 2004). Mathematically speaking, we establish some existence theorems for local smooth, global smooth or global weak solutions of the different models. We also justify that the inertia terms can be rigorously neglected under appropriate scaling assumptions in the generalized Navier–Stokes–Boussinesq equations. Finally, we show how a “stringy” generalization of the AHT model can be related to the magnetic relaxation model studied by Arnold and Moffatt to obtain stationary solutions of the Euler equations with prescribed topology (see Arnold and Khesin in Topological methods in hydrodynamics. Applied mathematical sciences, vol. 125, Springer, Berlin, 1998; Moffatt in J. Fluid Mech. 159:359–378, 1985, Topological aspects of the dynamics of fluids and plasmas. NATO adv. sci. inst. ser. E, appl. sci., vol. 218, Kluwer, Dordrecht, 1992; Schonbek in Theory of the Navier–Stokes equations, Ser. adv. math. appl. sci., vol. 47, pp. 179–184, World Sci., Singapore, 1998; Vladimirov et al. in J. Fluid Mech. 390:127–150, 1999; Nishiyama in Bull. Inst. Math. Acad. Sin. (N.S.) 2:139–154, 2007).  相似文献   

10.
Koplienko (Sib Math J 25(5): 735–743, 1984) gave a trace formula for perturbations of self-adjoint operators by operators of Hilbert–Schmidt class ${\mathcal{B}_2(\mathcal{H})}$ . Recently Gesztesy et?al. (Basics Z Mat Fiz Anal Geom 4(1):63–107, 2008) gave an alternative proof of the trace formula when the operators involved are bounded. In this article, we give a still another proof and extend the formula for unbounded case by reducing the problem to a finite dimensional one as in the proof of Krein trace formula by Voiculescu (On a Trace Formula of M. G. Krein. Operator Theory: Advances and Applications, vol. 24, pp. 329–332. Birkhauser, Basel, 1987), Sinha and Mohapatra (Proc Indian Acad Sci (Math Sci) 104(4):819–853, 1994).  相似文献   

11.
We provide new sufficient convergence conditions for the semilocal convergence of Ulm’s method (Izv. Akad. Nauk Est. SSR 16:403–411, 1967) in order to approximate a locally unique solution of an equation in a Banach space setting. We show that in some cases, our hypotheses hold true but the corresponding ones (Burmeister in Z. Angew. Math. Mech. 52:101–110, 1972; Kornstaedt in Aequ. Math. 13:21–45, 1975; Petzeltova in Comment. Math. Univ. Carol. 21:719–725, 1980; Potra and Ptǎk in Cas. Pest. Mat. 108:333–341, 1983; Ulm in Izv. Akad. Nauk Est. SSR 16:403–411, 1967) do not. We also show that under the same hypotheses and computational cost as (Burmeister in Z. Angew. Math. Mech. 52:101–110, 1972; Kornstaedt in Aequ. Math. 13:21–45, 1975; Petzeltova in Comment. Math. Univ. Carol. 21:719–725, 1980; Potra and Ptǎk in Cas. Pest. Mat. 108:333–341, 1983; Ulm in Izv. Akad. Nauk Est. SSR 16:403–411, 1967) finer error sequences can be obtained. Numerical examples are also provided further validating the results.  相似文献   

12.
We introduce ideas and methods from distribution theory into value theory. This new approach enables us to construct new diagonal formulas for the Mertens value (Int J Game Theory 17:1–65, 1988) and the Neyman value (Isr J Math 124:1–27, 2001) on a large space of non-differentiable games. This in turn enables us to give an affirmative answer to the question, first posed by Neyman (Isr J Math 124:1–27, 2001), whether the Mertens value and the Neyman value coincide “modulo Banach limits”? The solution is an intermediate result towards a characterization of values of norm 1 of vector measure games with bounded variation.  相似文献   

13.
We report a computational study of two-stage SP models on a large set of benchmark problems and consider the following methods: (i) Solution of the deterministic equivalent problem by the simplex method and an interior point method, (ii) Benders decomposition (L-shaped method with aggregated cuts), (iii) Regularised decomposition of Ruszczy??ski (Math Program 35:309?C333, 1986), (iv) Benders decomposition with regularization of the expected recourse by the level method (Lemaréchal et al. in Math Program 69:111?C147, 1995), (v) Trust region (regularisation) method of Linderoth and Wright (Comput Optim Appl 24:207?C250, 2003). In this study the three regularisation methods have been introduced within the computational structure of Benders decomposition. Thus second-stage infeasibility is controlled in the traditional manner, by imposing feasibility cuts. This approach allows extensions of the regularisation to feasibility issues, as in Fábián and Sz?ke (Comput Manag Sci 4:313?C353, 2007). We report computational results for a wide range of benchmark problems from the POSTS and SLPTESTSET collections and a collection of difficult test problems compiled by us. Finally the scale-up properties and the performance profiles of the methods are presented.  相似文献   

14.
This paper analyzes players’ long-run behavior in evolutionary coordination games with imitation and one-dimensional local interaction. Players are assumed to interact with their two neighbors and to imitate actions with the highest average payoffs. We find that the payoff-dominant equilibrium survives in the long run with positive probability. The results derive the conditions under which both risk-dominant-strategy and payoff-dominant-strategy takers co-exist in the long run. The risk-dominant equilibrium is the unique long-run equilibrium for the remaining cases. This study extends and complements the analyses of Eshel et al. (Am Econ Rev 88:157–179, 1998) and Vega-Redondo (Evolution, games, and economic behaviour, 1996). Combining Alós-Ferrer and Weidenholzer’s (Econ Lett 93:163–168, 2006; J Econ Theory 14:251–274, 2008) and our results, we conclude that players’ long-run behavior varies with imitation rules and information collecting modes. Finally, we show the convergence rate to all the long-run equilibria.  相似文献   

15.
Following Müller and Pflug (Insur Math Econ 28:381?C392, 2001) and Nyrhinen (Adv Appl Probab 30:1008?C1026, 1998; J Appl Probab 36:733?C746, 1999), we study the adjustment coefficient of ruin theory in a context of temporal dependency. We provide a consistent estimator for this coefficient, and perform some simulations.  相似文献   

16.
An \(n\) -poised set in two dimensions is a set of nodes admitting unique bivariate interpolation with polynomials of total degree at most \(n\) . We are interested in poised sets with the property that all fundamental polynomials are products of linear factors. Gasca and Maeztu (Numer Math 39:1–14, 1982) conjectured that every such set necessarily contains \(n+1\) collinear nodes. Up to now, this had been confirmed only for \(n\le 4\) , the case \(n=4\) having been proved for the first time by Busch (Rev Un Mat Argent 36:33–38, 1990). In the present paper, we prove the case \(n=5\) with new methods that might also be useful in deciding the still open cases for \(n\ge 6\) .  相似文献   

17.
M. Volle 《TOP》2012,20(2):534-546
We give some properties and uses of a primal–dual operation on sets that appear in the closed convex relaxation process (Hiriart-Urruty et al. in Rev. Mat. Iberoam. 27(2):449–474, 2011; López and Volle in J. Conv. Anal. 17(3–4):1057–1075, 2010). Applications are provided concerning a class of relaxed minimization problems in the frame of the so called B-regularization theory. Special attention is paid to the case when the initial problem admits optimal solutions under compactness assumptions.  相似文献   

18.
We introduce and study new families of finite-dimensional Hopf algebras with the Chevalley property that are not pointed nor semisimple arising as twistings of quantum linear spaces. These Hopf algebras generalize the examples introduced in Andruskiewitsch et al. (Mich Math J 49(2):277–298, 2001), Etingof and Gelaki (Int Math Res Not 14:757–768, 2002, Math Res Lett 8:249–255, 2001).  相似文献   

19.
John Holte (Am. Math. Mon. 104:138?C149, 1997) introduced a family of ??amazing matrices?? which give the transition probabilities of ??carries?? when adding a list of numbers. It was subsequently shown that these same matrices arise in the combinatorics of the Veronese embedding of commutative algebra (Brenti and Welker, Adv. Appl. Math. 42:545?C556, 2009; Diaconis and Fulman, Am. Math. Mon. 116:788?C803, 2009; Adv. Appl. Math. 43:176?C196, 2009) and in the analysis of riffle shuffling (Diaconis and Fulman, Am. Math. Mon. 116:788?C803, 2009; Adv. Appl. Math. 43:176?C196, 2009). We find that the left eigenvectors of these matrices form the Foulkes character table of the symmetric group and the right eigenvectors are the Eulerian idempotents introduced by Loday (Cyclic Homology, 1992) in work on Hochschild homology. The connections give new closed formulae for Foulkes characters and allow explicit computation of natural correlation functions in the original carries problem.  相似文献   

20.
We present a local as well as a semilocal convergence analysis for Newton’s method for approximating a locally unique solution of a nonlinear equation in a Banach space setting. Our hypotheses involve m-Fréchet-differentiable operators and general Lipschitz-type hypotheses, where m≥2 is a positive integer. The new convergence analysis unifies earlier results; it is more flexible and provides a finer convergence analysis than in earlier studies such as Argyros in J. Comput. Appl. Math. 131:149–159, 2001, Argyros and Hilout in J. Appl. Math. Comput. 29:391–400, 2009, Argyros and Hilout in J. Complex. 28:364–387, 2012, Argyros et al. Numerical Methods for Equations and Its Applications, CRC Press/Taylor & Francis, New York, 2012, Gutiérrez in J. Comput. Appl. Math. 79:131–145, 1997, Ren and Argyros in Appl. Math. Comput. 217:612–621, 2010, Traub and Wozniakowski in J. Assoc. Comput. Mech. 26:250–258, 1979. Numerical examples are presented further validating the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号