首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A scheme for two-dimensional (2D) atom localization via Raman-driven coherence in a four-level diamond-configuration system is suggested. The atom interacts with two orthogonal standing-wave fields where each standing-wave field is constructed from the superposition of the two-standing wave fields along the corresponding directions. Due to the position-dependent atom–field interaction, the frequency of the spontaneously emitted photon carries the position information about the atom. We investigate the effect of the detunings and phase shifts associated with standing-wave fields. Unique position information of the single atom is obtained by properly adjusting the system parameters. This is an extension of our previous proposal for one-dimensional atom localization via Raman-driven coherence [1].  相似文献   

2.
A theoretical study is presented for two-dimensional (2D) and three-dimensional (3D) atom localization in a four-level atomic system involving a Rydberg state. The scheme is based on a mixture of two well-known V- and ladder-type systems illuminated by a weak probe field as well as control and switching laser beams of larger intensity, which could be standing waves. As a result of space-dependent atom? light interaction and due to the effect of Rydberg electromagnetically induced transparency or Rydberg electromagnetically induced absorption, various 2D and 3D localization structures appear. Specifically, the detecting probability and precision of 2D and 3D atom localization can be remarkably enhanced through suitable adjusting the controlling parameters of the system. The proposed scheme may provide a promising approach to achieve high precision and perfect resolution 2D and 3D atom localization.  相似文献   

3.
We present a simple scheme of atom localization in a subwavelength domain via manipulation of probe absorption spectrum in a four-level atomic system. Due to the joint quantum interference induced by the standing-wave and radio-frequency driving fields, the localization peak position and number as well as the conditional position probability can be controlled by properly adjusting the system parameters. The proposed scheme may provide a promising way to achieve high-precision and high-resolution 1D atom localization.  相似文献   

4.
We investigate the two-dimensional atom localization behaviors in a four-level atomic system via controlled spontaneous emission in a single decay channel. It is found that the detecting probability and precision of atom localization behaviors can be significantly improved via adjusting the system parameters. More importantly, the two-dimensional atom localization patterns reveal that the maximal probability of finding an atom within the sub-half-wavelength domain of the standing waves can reach unity when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization.  相似文献   

5.
We investigate the one- and two-dimensional atom localization behaviors via spontaneous emission in a coherently driven five-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of atom localization behaviors can be significantly improved via adjusting the system parameters. More importantly, the two-dimensional atom localization patterns reveal that the maximal probability of finding an atom within the sub-wavelength domain of the standing waves can reach unity when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization.  相似文献   

6.
A scheme of two-dimensional (2D) atom localization based on the phase-sensitive probe absorption is proposed in a four-level Λ-type atomic system with an assisting radio-frequency (rf)-driven field. The obtained 2D atom localization patterns reveal that the maximal probability of finding an atom within the sub-wavelength domain of the standing waves can arrive at unity by appropriate choice of the system parameters.  相似文献   

7.
We investigate high-precision three-dimensional (3D) atom localization in a coherently-driven, fourlevel atomic system via spontaneous emission. Space-dependent atom-field interactions allow atomic position information to be obtained by measuring spontaneous emission. By properly varying system parameters, atoms within a certain range can be localized with nearly a probability of 100% and a maximal resolution of ~0.04λ. This scheme may be useful for the high-precision measurement of the center-of-mass wave functions of moving atoms and in atom nanolithography.  相似文献   

8.
王玉成  刘雄军  陈澍 《物理学报》2019,68(4):40301-040301
准周期晶格在冷原子领域被广泛研究,它使得人们可以在一维或者二维系统里研究扩展到安德森局域的转变. 2008年, Inguscio研究组在冷原子系统里制备了一维准周期晶格,并观测到了安德森局域化现象,这极大地推动了准周期系统的理论和实验研究.后来, Bloch研究组在制备的一维和二维准周期晶格中都观测到了多体局域的现象.最近,他们还在准周期晶格中成功观测到迁移率边以及存在迁移率边的系统的多体局域现象.这些冷原子实验推动了多体局域以及迁移率边等方向的研究.准周期晶格已经成为一个平台,它对很多物理现象的影响正在被广泛研究,并可以尝试在冷原子实验中观测到这种影响.本文结合作者的一些相关工作,对一维准周期晶格一些近期的研究进行了简要综述,介绍了一些相关的重要的冷原子实验,讨论了准周期晶格的一些重要性质,以及它对一些物理现象(比如拓扑态)的影响.  相似文献   

9.
A scheme for two-dimensional (2D) subwavelength atom localization is proposed, in which the atom is in an inverted-Y configuration and driven by two orthogonal standing-wave lasers. Due to the spatial dependence of atom-field interaction, the quantities of system, including the frequency of spontaneously emitted photon, the population in the excited state, and the probe absorption, carry information about the position of atom in standing-wave fields. We exploit this fact to 2D atom localization, and obtain a high precision and resolution in the position probability distribution.  相似文献   

10.
In the present paper, we investigate the behavior of two-dimensional atom localization in a five-level M-scheme atomic system driven by two orthogonal standing-wave fields. We find that the precision and resolution of the atom localization depends on the probe field detuning significantly. And because of the effect of the microwave field, an atom can be located at a particular position via adjusting the system parameters.  相似文献   

11.
We present a simple scheme of atom localization in a subwavelength domain via manipulation of probe absorption spectrum in a four-level atomic system. By applying two orthogonal standing-wave fields, the localization peak position and number as well as the conditional position probability can be controlled by the intensities and detunings of optical fields, and the sub-half-wavelength atom localization is also observed. More importantly, there is 100% detecting probability of the atom in the subwavelength domain when the corresponding conditions are satisfied.  相似文献   

12.
We investigate two-dimensional (2D) electron localization via phase-controlled absorption and gain of a weak probe field in an asymmetric semiconductor three-coupled quantum well (TCQW) with a closed loop under the action of two orthogonal standing-wave fields. It is found that we can achieve high-precision and high-resolution 2D electron localization via properly varying the parameters of the system. The influences of direct one-photon transition and indirect three-photon transition on the precision of probe absorption–gain spectra are also discussed in details. Thus, the proposed scheme shows the underlying probability for the formation of the 2D electron localization in a solid.  相似文献   

13.
Abdul Wahab 《中国物理 B》2021,30(9):94202-094202
We aim to present a new scheme for high-dimensional atomic microscopy via double electromagnetically induced transparency in a four-level tripod system. For atom–field interaction, we construct a spatially dependent field by superimposing three standing-wave fields(SWFs) in 3 D-atom localization. We achieve a high precision and high spatial resolution of an atom localization by appropriately adjusting the system variables such as field intensities and phase shifts. We also see the impact of Doppler shift and show that it dramatically deteriorates the precision of spatial information on 3 D-atom localization. We believe that our suggested scheme opens up a fascinating way to improve the atom localization that supplies some practical applications in atom nanolithography, and Bose–Einstein condensation.  相似文献   

14.
《中国物理 B》2021,30(5):53202-053202
Rydberg atoms have been widely investigated due to their large size, long radiative lifetime, huge polarizability and strong dipole-dipole interactions. The position information of Rydberg atoms provides more possibilities for quantum optics research, which can be obtained under the localization method. We study the behavior of three-dimensional(3 D)Rydberg atom localization in a four-level configuration with the measurement of the spatial optical absorption. The atomic localization precision depends strongly on the detuning and Rabi frequency of the involved laser fields. A 100% probability of finding the Rydberg atom at a specific 3 D position is achieved with precision of ~0.031λ. This work demonstrates the possibility for achieving the 3 D atom localization of the Rydberg atom in the experiment.  相似文献   

15.
王飞  徐俊 《中国物理 B》2016,25(10):104201-104201
A scheme of two-dimensional(2D) atom localization induced by a squeezed vacuum is proposed, in which the threelevel V-type atoms interact with two classical standing-wave fields. It is found that when the environment is changed from an ordinary vacuum to a squeezed vacuum, the 2D atom localization is realized by detecting the position-dependent resonance fluorescence spectrum. For comparison, we demonstrate that the atom localization originating from the quantum interference effect is distinct from that induced by a squeezed vacuum. Furthermore, the combined effects of the squeezed vacuum and quantum interference are also discussed under appropriate conditions. The internal physical mechanism is analyzed in terms of dressed-state representation.  相似文献   

16.
We investigate the two-dimensional gain and absorption of a weak probe field via two orthogonal standing-wave lasers in a four-level inverted-Y asymmetric quantum well system. We find that, due to the spatial-dependent quantum interference effect, the spatial distribution of the 2D gain and absorption spectra can be easily controlled by adjusting the system parameters. More importantly, the probe gain-absorption spectrum can be controlled at a particular position and the 2D localization effect is indeed achieved efficiently. Thus, our scheme shows the underlying probability for the formation of the 2D localization effect by using a QW structure.  相似文献   

17.
We investigate the two-dimensional (2D) probe absorption spectrum in a four-subband semiconductor quantum-well system driven by two orthogonal standing-wave lasers. It is found that the spatial distribution of 2D probe absorption spectrum can be significantly improved via adjusting the system parameters. The scheme shows the underlying probability for the formation of the 2D electron localization in a solid.  相似文献   

18.
We investigate the two-dimensional (2D) probe absorption spectrum in a four-subband three-coupled semiconductor quantum-well system driven by two orthogonal standing-wave lasers. It is found that, due to the quantum interference effect, the 2D spatial distribution of probe absorption spectrum can be easily controlled via adjusting the system parameters. Thus, our scheme shows the underlying probability for the formation of the 2D electron localization in a solid.  相似文献   

19.
We investigate the two-dimensional (2D) probe absorption spectrum in a four-subband coupled double quantum-well system driven by two orthogonal standing-wave lasers. It is found that, due to the quantum interference effect of interacting dark resonances, the 2D spatial distribution of probe absorption spectrum can be easily controlled via adjusting the system parameters. Thus, our scheme shows the underlying probability for the formation of the 2D electron localization in a solid.  相似文献   

20.
Atom localization in a five-level atomic system under the effect of three driving fields and one standing wave field is suggested. A spontaneously emitted photon from the proposed system is measured in a detector. Precision position measurement of an atom is controlled via phase and vacuum field detuning without considering the parity violation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号