首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Infrared action spectroscopy and dissociation dynamics of the HOOO radical   总被引:1,自引:0,他引:1  
The HOOO radical has long been postulated to be an important intermediate in atmospherically relevant reactions and was recently deemed a significant sink for OH radicals in the tropopause region. In the present experiments, HOOO radicals are generated in a pulsed supersonic expansion by the association of O(2) and photolytically generated OH radicals, and the spectral signature and vibrational predissociation dynamics are investigated via IR action spectroscopy, an IR-UV double resonance technique. Rotationally resolved IR action spectra are obtained for trans-HOOO in the fundamental (nu(OH)) and overtone (2nu(OH)) OH stretching regions at 3569.30 and 6974.18 cm(-1), respectively. The IR spectra exhibit homogeneous line broadening, characteristic of a approximately 26-ps lifetime, which is attributed to intramolecular vibrational redistribution and/or predissociation to OH and O2 products. In addition, an unstructured feature is observed in both the OH fundamental and overtone regions of HOOO, which is likely due to cis-HOOO. The nascent OH X(2)Pi, v = 0 or v = 1, products following vibrational predissociation of HOOO, nu(OH) or 2nu(OH), respectively, have been investigated using saturated laser-induced fluorescence measurements. A distinct preference for population of Pi(A') Lambda-doublets in OH was observed and is indicative of a planar dissociation of trans-HOOO in which the symmetry of the bonding orbital is maintained.  相似文献   

2.
In an attempt to explain the observed nightglow emission from OH(v=10) in the mesosphere that has the energy greater than the exothermicity of the H+O(3) reaction, potential energy surfaces were calculated for reactions of high lying electronic states of O(2)(A (3)Sigma(u) (+) and A' (3)Delta(u)) with atomic hydrogen H((2)S) to produce the ground state products OH((2)Pi)+O((3)P). From collinear two-dimensional scans, several adiabatic and nonadiabatic pathways have been identified. Multiconfigurational single and double excitation configuration interaction calculations show that the adiabatic pathways on a (4)Delta potential surface from O(2)(A' (3)Delta)+H and a (4)Sigma(+) potential surface from O(2)(A (3)Sigma(u) (+))+H are the most favorable, with the zero-point corrected barrier heights of as low as 0.191 and 0.182 eV, respectively, and the reactions are fast. The transition states for these pathways are collinear and early, and the reaction coordinate suggests that the potential energy release of ca. 3.8 eV (larger than the energy required to excite OH to v=10) is likely to favor high vibrational excitation.  相似文献   

3.
We present a new reaction path without significant barriers for the C + NO reaction, forming ground state N((4)S) and CO. Electronic structure (CASPT2) calculations have been performed for the two lowest (4)A' states of the CNO system. The lowest of these states shows no significant barriers against reaction in the C + NO or O + CN channels. This surface has been fitted to an analytical function using a many-body expansion. Using this surface, and the previously published (2)A' and (2)A' surfaces [Andersson et al., Phys. Chem. Chem. Phys., 2000, 2, 613; Andersson et al., Chem. Phys., 2000, 259, 99], we have performed quasiclassical trajectory (QCT) calculations, obtaining rate coefficients for the C((3)P) + NO(X(2)Pi) --> CO(X(1)Sigma(+)) + N((4)S,(2)D) and C((3)P) + NO(X(2)Pi) --> O((3)P) + CN(X(2)Sigma(+)) reactions. We have also simulated the crossed molecular beam experiments of Naulin et al. [Chem. Phys., 1991, 153, 519] The inclusion of the (4)A' surface in the QCT calculations gives excellent agreement with experiments. This is the first time an adiabatic pathway from C((3)P) + NO(X(2)Pi) to CO(X(1)Sigma(+))+N((4)S) has been reported.  相似文献   

4.
The number of independent components, n, of traceless electric 2(l)-multipole moments is determined for C(infinity v) molecules in Sigma(+/-), Pi, Delta, and Phi electronic states (Lambda=0,1,2,3). Each 2(l) pole is defined by a rank-l irreducible tensor with (2l+1) components P(m)((l)) proportional to the solid spherical harmonic r(l)Y(m)(l)(theta,phi). Here we focus our attention on 2(l) poles with l=2,3,4 (quadrupole Theta, octopole Omega, and hexadecapole Phi). An important conclusion of this study is that n can be 1 or 2 depending on both the multipole rank l and state quantum number Lambda. For Sigma(+/-)(Lambda=0) states, all 2(l) poles have one independent parameter (n=1). For spatially degenerate states--Pi, Delta, and Phi (Lambda=1,2,3)--the general rule reads n=1 for l<2/Lambda/ (when the 2(l)-pole rank lies below 2/Lambda/ but n=2 for higher 2(l) poles with l>or=2/Lambda/. The second nonzero term is the off-diagonal matrix element [formula: see text]. Thus, a Pi(Lambda=1) state has one dipole (mu(z)) but two independent 2(l) poles for l>or=2--starting with the quadrupole [Theta(zz),(Theta(xx)-Theta(yy))]. A Delta(Lambda=2) state has n=1 for 2((1,2,3)) poles (mu(z),Theta(zz),Omega(zzz)) but n=2 for higher 2((l>or=4)) poles--from the hexadecapole Phi up. For Phi(Lambda=3) states, it holds that n=1 for 2(1) to 2(5) poles but n=2 for all 2((l>or=6)) poles. In short, what is usually stated in the literature--that n=1 for all possible 2(l) poles of linear molecules--only applies to Sigma(+/-) states. For degenerate states with n=2, all Cartesian 2(l)-pole components (l>or=2/Lambda/) can be expressed as linear combinations of two irreducible multipoles, P(m=0)((l)) and P/m/=2 Lambda)((l)) [parallel (z axis) and anisotropy (xy plane)]. Our predictions are exemplified by the Theta, Omega, and Phi moments calculated for Lambda=0-3 states of selected diatomics (in parentheses): X (2)Sigma(+)(CN), X (2)Pi(NO), a (3)Pi(u)(C(2)), X (2)Delta(NiH), X (3)Delta(TiO), X (3)Phi(CoF), and X (4)Phi(TiF). States of Pi symmetry are most affected by the deviation from axial symmetry.  相似文献   

5.
A pure and highly intense state-selected pulsed supersonic CH(X (2)Pi) radical beam source was developed by use of the C((1)D)+H(2) reaction with the combination of the state selection and purification by an electrostatic hexapole field. Under the beam-cell condition, the elementary reactions of CH+NO and CH+O(2) were studied by using this state-selected CH beam. NH(A (3)Pi) [and NCO(A (2)Sigma(+))] formations and OH(A (2)Sigma(+)) formation were directly identified in the elementary reaction of CH+NO and CH+O(2), respectively. For the CH+NO reaction, the relative branching ratio sigma(NCO*)sigma(NH) of NCO(A (2)Sigma(+)) formation to NH(A (3)Pi) formation was determined to be 0.35+/-0.15. The state-selected reaction cross sections were determined for each rotational state of CH. In the CH+NO reaction, a remarkable rotational state dependence of the reactive cross section was revealed, while the CH+O(2) reaction showed little rotational state dependence.  相似文献   

6.
The product state-resolved dynamics of the reactions H+H(2)O/D(2)O-->OH/OD((2)Pi(Omega);v',N',f )+H(2)/HD have been explored at center-of-mass collision energies around 1.2, 1.4, and 2.5 eV. The experiments employ pulsed laser photolysis coupled with polarized Doppler-resolved laser induced fluorescence detection of the OH/OD radical products. The populations in the OH spin-orbit states at a collision energy of 1.2 eV have been determined for the H+H(2)O reaction, and for low rotational levels they are shown to deviate from the statistical limit. For the H+D(2)O reaction at the highest collision energy studied the OD((2)Pi(3/2),v'=0,N'=1,A') angular distributions show scattering over a wide range of angles with a preference towards the forward direction. The kinetic energy release distributions obtained at 2.5 eV also indicate that the HD coproducts are born with significantly more internal excitation than at 1.4 eV. The OD((2)Pi(3/2),v'=0,N'=1,A') angular and kinetic energy release distributions are almost identical to those of their spin-orbit excited OD((2)Pi(1/2),v'=0,N'=1,A') counterpart. The data are compared with previous experimental measurements at similar collision energies, and with the results of previously published quasiclassical trajectory and quantum mechanical calculations employing the most recently developed potential energy surface. Product OH/OD spin-orbit effects in the reaction are discussed with reference to simple models.  相似文献   

7.
Unimolecular dissociation of a neopentyl radical to isobutene and methyl radical is competitive with the neopentyl association with O2 ((3)Sigma(g)-) in thermal oxidative systems. Furthermore, both isobutene and the OH radical are important primary products from the reactions of neopentyl with O2. Consequently, the reactions of O2 with the 2-hydroxy-1,1-dimethylethyl and 2-hydroxy-2-methylpropyl radicals resulting from the OH addition to isobutene are important to understanding the oxidation of neopentane and other branched hydrocarbons. Reactions that correspond to the association of radical adducts with O2((3)Sigma(g)-) involve chemically activated peroxy intermediates, which can isomerize and react to form one of several products before stabilization. The above reaction systems were analyzed with ab initio and density functional calculations to evaluate the thermochemistry, reaction paths, and kinetics that are important in neopentyl radical oxidation. The stationary points of potential energy surfaces were analyzed based on the enthalpies calculated at the CBS-Q level. The entropies, S(degrees)298, and heat capacities, C(p)(T), (0 相似文献   

8.
The fine structure resolved photofragment O(-)((2)P(j)) image from the O(2) ion-pair production at 17.499 eV has been recorded. The branching ratio for producing the low energy spin-orbit O(-)((2)P(3/2)) component to the high energy spin-orbit O(-)((2)P(1/2)) component is 1:0.78 and the optical transitions for them correspond to perpendicular and parallel transitions, respectively. The anisotropy parameters, 1.64 for channel producing O(-)((2)P(1/2)) and -0.35 for O(-)((2)P(3/2)), suggest that the dissociation proceeds via the states with symmetry (3)Sigma(u)(-) and (3)Pi(u), respectively. Although the main mechanisms for the O(2) ion-pair production are the predissociation via the intermediate Rydberg states, the direct dissociation mechanism for the channel producing O(-)((2)P(1/2)) may also be involved.  相似文献   

9.
The photodissociation of N(2)O at wavelengths near 130 nm has been investigated by velocity-mapped product imaging. In all, five dissociation channels have been detected, leading to the following products: O((1)S)+N(2)(X (1)Sigma), N((2)D)+NO(X (2)Pi), N((2)P)+NO(X (2)Pi), O((3)P) + N(2)(A (3)Sigma(+) (u)), and O((3)P) + N(2)(B (3)Pi(g)). The most significant channel is to the products O((1)S) + N(2)(X(1)Sigma), with strong vibrational excitation in the N(2). The O((3)P) + N(2)(A,B):N((2)D,(2)P) + NO branching ratio is measured to be 1.4 +/- 0.5, while the N(2)(A) + O((3)P(J)):N(2)(B) + O((3)P(J)) branching ratio is determined to be 0.84+/-0.09. The spin-orbit distributions for the O((3)P(J)), N((2)P(J)), and N((2)D(J)) products were also determined. The angular distributions of the products are in qualitative agreement with excitation to the N(2)O(D (1)Sigma(+)) state, with participation as well by the (3)Pi(v) state.  相似文献   

10.
Nitrous oxide (N(2)O) is an intermediate compound formed during catalysis occurring in automobile exhaust pipes. Atomic Au in its ground state is unable to react with N(2)O, however, several Au excited states are bound to N(2)O, but not all of these states are able to activate N(2)O bonds. In this work, N(2)O capture and activation by a single Au atom are studied considering Au in the ground and excited states with multiplicities = 2, 4 and 6. The Au + N(2)O reactions are studied at multireference second-order perturbation level of theory using C(s) symmetry. The AuN(2)O ((4)A', (4)A', (6)A' and (6)A') adducts are spontaneously created from Au excited states. From these complexes, only the (4)A', (6)A' and (6)A' states exhibit N(2)O activation reaction paths yielding N(2,) NO and O atoms as end products when N(2)O approaches Au excited states side-on. Cations both ground and excited states, capture N(2)O although only the Au(+) ((5)A') + N(2)O ((1)Σ(+)) → NAuNO(+) ((5)A') reaction (for the end-on and side-on approaches) shows N(2)O activation with N-N bond breaking. In the case of Au anions, the ground state and most of the excited states capture N(2)O and activation takes place according to Au(-) ((3)A', (5)A', (5)A') + N(2)O ((1)Σ(+)) → AuO(-) ((3)A', (5)A', (5)A') + N(2)(g) for the N(2)O end-on approach by the oxygen atom. The reaction paths show a metal-gas dative covalent bonding character. Mulliken charge population analysis obtained for the active states shows that the binding is done through charge donation and retro-donation between the metal and the N(2)O molecule.  相似文献   

11.
We report a combined experimental and theoretical investigation of the nonreactive quenching channel resulting from electronic quenching of OH A 2Sigma+ by molecular hydrogen. The experiments utilize a pump-probe scheme to determine the OH X 2Pi population distribution following collisional quenching in a pulsed supersonic expansion. The pump laser excites OH A 2Sigma+ (nu'=0, N'=0), which has a significantly reduced fluorescence lifetime due to quenching by H2. The probe laser monitors the OH X 2Pi (nu", N") population via laser-induced fluorescence on various A-X transitions under single collision conditions. The experiments reveal a high degree of rotational excitation (N") of the quenched OH X 2Pi products observed in nu"=1 and 2 as well as a pronounced propensity for quenching into the Pi(A') Lambda-doublet level. These experiments have been supplemented by extensive multireference, configuration-interaction calculations aimed at exploring the topology of the relevant potential energy surfaces. Electronic quenching of OH A 2Sigma+ by H2 proceeds through conical intersections between two potentials of A' reflection symmetry (in planar geometry) that correlate with the electronically excited A 2Sigma+ and ground X 2Pi states of OH. The conical intersections occur in high-symmetry geometries, in which the O side of OH points toward H2. Corroborating and extending earlier work of Hoffman and Yarkony [J. Chem. Phys. 113, 10091 (2000)], these calculations reveal a steep gradient away from the OH-H2 conical intersection as a function of both the OH orientation and interfragment distance. The former will give rise to a high degree of OH rotational excitation, as observed for the quenched OH X 2Pi products.  相似文献   

12.
We report state-to-state and overall thermal rate constants for the isotope exchange reaction D((2)S)+OH((2)Pi)-->OD((2)Pi)+H((2)S) for 0 K相似文献   

13.
14.
The lowest singlet and triplet electronic levels of the A' and A" symmetry species of the neutral copper-nitrosyl (CuNO) system are calculated by ab initio methods at the multi-reference configuration interaction (MRCI) level of theory with single and double excitations, and at the coupled cluster level of theory with both perturbational (CCSD(T)) and full inclusion of triple excitations (CCSDT). Experimental data are difficult to obtain, hence the importance of carrying out calculations as accurate as possible to address the structure and dynamics of this system. This paper aims at validating a theoretical protocol to develop global potential energy surfaces for transition metal nitrosyl complexes. For the MRCI calculations, the comparison of level energies at linear structures and their values from C(2v) and C(s) symmetry restricted calculations has allowed to obtain clear settings regarding atomic basis sizes, active orbital spaces and roots obtained at the multi-configurational self-consistent field (MCSCF) level of theory. It is shown that a complete active space involving 18 valence electrons, 11 molecular orbitals and the prior determination of 12 roots in the MCSCF calculation is needed for overall qualitatively correct results from the MRCI calculations. Atomic basis sets of the valence triple-zeta type are sufficient. The present calculations yield a bound singlet A' ground state for CuNO. The CCSD(T) calculations give a quantitatively more reliable account of electronic correlation close to equilibrium, while the MRCI energies allow to ensure the qualitative assessment needed for global potential energy surfaces. Relativistic coupled cluster calculations using the Douglas-Kroll-Hess Hamiltonian yield a dissociation energy of CuNO into Cu and NO to be (59 ± 5) kJ mol(-1) ((4940 ± 400) hc?cm(-1)). Favorable comparison is made with some of previous theoretical results and a few known experimental data.  相似文献   

15.
Oxygen Rydberg time-of-flight spectroscopy was used to study the vacuum ultraviolet photodissociation dynamics of N(2)O near 130 nm. The O((3)P(J)) products were tagged by excitation to high-n Rydberg levels and subsequently field ionized at a detector. In agreement with previous work, we find that O((3)P(J)) formation following excitation to the repulsive N(2)O D((1)Sigma(+)) state produces the first two electronically excited states of the N(2) counterfragment, N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)). The O((3)P(J)) translational energy distribution reveals that the overall branching ratio between N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)) formation is approximately 1.0:1.0 for J = 1 and 2, with slightly less N(2)(B (3)Pi(g)) produced in coincidence with O((3)P(0)). The angular distributions were found to be independent of J and highly anisotropic, with beta = 1.5+/-0.2.  相似文献   

16.
The geometries and energies of 4-, 3-, and 2-dehydrophenylnitrenes (3, 4, and 5) are investigated using complete active space self-consistent field (CASSCF), multiconfiguration quasi-degenerate second-order perturbation (MCQDPT), and internally contracted multiconfiguration-reference configuration interaction (MRCI) theories in conjunction with a correlation consistent triple-zeta basis set. 4-Dehydrophenylnitrene 3 has a quartet ground state ((4)A(2)). The adiabatic excitation energies to the (2)A(2), (2)B(2), (2)A(1), and (2)B(1) states are 5, 21, 34, and 62 kcal mol(-1), respectively. The (2)B(2) state has pronounced closed-shell carbene/iminyl radical character, while the lowest-energy (2)B(1) state is a combination of a planar allene and a 2-iminylpropa-1,3-diyl. The MCQDPT treatment overestimates the excitation energy to (2)B(2) significantly as compared to CASSCF and MRCI+Q. Among quartet states, (4)A(2)-3 is the most stable one, while those of 4 and 5 (both (4)A') are 3 and 1 kcal mol(-1) higher in energy. 5 also has a quartet ground state and a (2)A' ' state 7 kcal mol(-1) higher in energy. On the other hand, the doublet-quartet energy splitting is -6 kcal mol(-1) for 4 in favor of the doublet state ((2)A'). Hence, (2)A'-4 is the most stable dehydrophenylnitrene, 3.5 kcal mol(-1) below (4)A(2) of 3. The geometry of (2)A'-4 shows the characteristic features of through-bond interaction between the in-plane molecular orbitals at N and at C3. The (2)A' state of 4 resembles the (2)A(1) state of 3 and lies 32 kcal mol(-1) above (4)A'-4. The lowest-energy (2)A' state of 5, on the other hand, resembles the (2)B(2) state of 3 and lies 22 kcal mol(-1) above (4)A'-5.  相似文献   

17.
A survey of the potential energy surface for a 1:1 copper dioxygen complex, (C(3)N(2)H(5))CuO(2), reveals two distinct states in the valence region, a singlet ((1)A(1)) and a triplet ((3)B(1)). The former spans a continuum from Cu(III)-O(2)(2-) to Cu(I)-O(2)((1)Delta(g)), while the latter spans Cu(II)-O(2)(1-) to Cu(I)-O(2)((3)Sigma(g)(-)). The point at which the potential energy curves for the two states cross marks an abrupt discontinuity in electron distribution, where the system shifts from dominant Cu(III)-O(2)(2-) character to Cu(II)-O(2)(1-). On this basis, we argue that there is no continuum between Cu(III)-peroxide and Cu(II)-superoxide: the two are represented by distinct states that differ both in symmetry and multiplicity.  相似文献   

18.
Electronic structure calculations based on multiconfiguration wave functions are used to investigate a set of archetypal reactions relevant to O(3P) processing of hydrocarbon molecules and surfaces. These include O(3P) reactions with methane and ethane to give OH plus methyl or ethyl radicals, O(3P) + ethane to give CH3O + CH3, and secondary reactions of the OH product radical with ethane and the ethyl radical. Geometry optimization is carried out with CASSCF/cc-pVTZ for all reactions, and with CASPT2/cc-pVTZ for O(3P) + methane/ethane. Single-point energy corrections are applied with CASPT2, CASPT3, and MRCI + Q with the cc-pVTZ and cc-pVQZ basis sets, and the energies extrapolated to the complete basis set limit (CBL). Where comparison of computed barriers and energies of reaction with experiment is possible, the agreement is good to excellent. The best agreement (within experimental error) is found for MRCI + Q/CBL applied to O(3P) + methane. For the other reactions, CASPT2/CBL and MRCI + Q/CBL predictions differ from experiment by 1-5 kcal/mol for 0 K enthalpies of reaction, and are within 1 kcal/mol of the best-estimate experimental range of 0 K barriers for O(3P) + ethane and OH + ethane. The accuracy of MRCI + Q/CBL is limited mainly by the quality of the active space. CASPT2/CBL barriers are consistently lower than MRCI + Q/CBL barriers with identical reference spaces.  相似文献   

19.
An alignment effect in the dissociative energy transfer reaction of Ar((3)P(2))+(X(2)O)(n)(X=N,H) was directly measured using an oriented Ar((3)P(2),M(J)=2) beam. The chemiluminescence intensity of N(2)(B,(3)Pi(g)) for (N(2)O)(n) and OH(A,(2)Sigma(+)) for (H(2)O)(n) was measured as a function of the magnetic orientation field direction in the collision frame. The relative reaction cross section for each magnetic substate in the collision frame, sigma(M(J) (') ), was determined. In both the reaction systems, it is observed that the dimer formation significantly enhances the alignment effect and decreases the reactivity, especially for sigma|1| and sigma|2|. A significant contribution of rank 4 moment is recognized in the dimer reaction.  相似文献   

20.
The ion-pair dissociation dynamics of N(2)O -->(XUV) N(2)(+)(X (2)Sigma(g)(+), v) + O(-)((2)P(j)) at 16.248, 16.271, 16.389, and 16.411 eV have been studied using the velocity map imaging method and tunable XUV laser. The electronic structures of the ion-pair states have been studied by employing the ab initio quantum chemical calculation. The translational energy distributions and the angular distributions of the photofragments have been measured. The results show that about 40% of available energies are transformed into the translational energies, and the first excited vibrational states are populated most strongly for all four excitation energies. The anisotropy parameters beta are approximately 1. The ab initio calculations at the level of CASSCF6-311++g(3df) show that the equilibrium geometries of the ion-pair states are nonlinear with bond lengths R(N-N) = 1.10 A, R(N-O) = 2.15 A, and bond angle N-N-O = 103 degrees, respectively. The ion-pair states are formed by electron migration from the bonding sigma orbital of N[triple bond]N to the antibonding sigma orbital localized primarily on the O atom. Combining the experimental and theoretical results, it is concluded that the ion-pair dissociation occurs via predissociation of Rydberg states with (1)Sigma(+) symmetry, which converges to the ion-core N(2)O(+)(A (2)Sigma(+)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号