首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(Ga1−xMnx)N thin films grown on GaN buffer layers by using molecular beam epitaxy were investigated with the goal of producing diluted magnetic semiconductors (DMSs) with band-edge exciton transitions for applications in optomagnetic devices. The magnetization curve as a function of the magnetic field at 5 K indicated that ferromagnetism existed in the (Ga1−xMnx)N thin films, and the magnetization curve as a function of the temperature showed that the ferromagnetic transition temperature of the (Ga1−xMnx)N thin film was above room temperature. Photoluminescence and photoluminescence excitation spectra showed that band-edge exciton transitions in (Ga1−xMnx)N thin films appeared. These results indicate that the (Ga1−xMnx)N DMSs with a magnetic single phase hold promise for potential applications in spin optoelectronic devices in the blue region of the spectrum.  相似文献   

2.
Based on effective-mass approximation, we present a three-dimensional study of the exciton in GaN/AlxGa1−xN vertically coupled quantum dots (QDs) by a variational approach. The strong built-in electric field due to the piezoelectricity and spontaneous polarization is considered. The relationship between exciton states and structural parameters of wurtzite GaN/AlxGa1−xN coupled QDs is studied in detail. Our numerical results show that the strong built-in electric field in the GaN/AlxGa1−xN strained coupled QDs leads to a marked reduction of the effective band gap of GaN QDs. The exciton binding energy, the QD transition energy and the electron-hole recombination rate are reduced if barrier thickness LAlGaN is increased. The sizes of QDs have a significant influence on the exciton state and interband optical transitions in coupled QDs.  相似文献   

3.
The effect of electron-beam irradiation on the magnetic properties of (Ga1−xMnx)As thin films grown on GaAs (100) substrates by using molecular beam epitaxy was investigated. The ferromagnetic transition temperature (Tc) of the annealed (Ga0.933Mn0.067)As thin films was 160 K. The Tc value for the as-grown (Ga0.933Mn0.067)As thin films drastically decreased with increasing electron-beam current. This significant decrease in the Tc value due to electron-beam irradiation originated from the transformation of Mn substituted atoms, which contributed to the ferromagnetism, into Mn interstitials or Mn-related clusters. These results indicate that the magnetic properties of (Ga1−xMnx)As thin films grown on GaAs (100) substrates are significantly affected by electron-beam irradiation.  相似文献   

4.
The Shubnikov-de Haas (S-dH) results at 1.5 K for AlxGa1−xN/AlN/GaN heterostructures and the fast Fourier transformation data for the S-dH data indicated the occupation by a two-dimensional electron gas (2DEG) of one subband in the GaN active layer. Photoluminescence (PL) spectra showed a broad PL emission about 30 meV below the GaN exciton emission peak at 3.474 eV that could be attributed to recombination between the 2DEG occupying in the AlN/GaN heterointerface and photoexcited holes. A possible subband structure was calculated by a self-consistent method taking into account the spontaneous and piezoelectric polarizations, and one subband was occupied by 2DEG below the Fermi level, which was in reasonable agreement with the S-dH results. These results can help improve understanding of magnetotransport, optical, and electronic subband properties in AlxGa1−xAs/AlN/GaN heterostructures.  相似文献   

5.
Multiple stacked self-assembled (In1−xMnx)As quantum-dot (QD) arrays were grown on GaAs (100) substrates by using molecular-beam epitaxy with a goal of producing (In1−xMnx)As QDs with a semiconductor phase and a high ferromagnetic transition temperature (Tc). Atomic force microscopy, magnetic force microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray fluorescence measurements showed that crystalline multiple stacked (In0.84Mn0.16)As with symmetric single-domain particle were formed on GaAs substrates. Near-field scanning optical spectroscopy spectra at 10 K for the (In0.84Mn0.16)As multiple stacked QDs showed that the band-edge exciton transitions were observed. The magnetization curve as a function of the magnetic field at 5 and 300 K indicated that the multiple stacked (In0.84Mn0.16)As QDs were ferromagnetic, and the magnetization curve as a function of the temperature showed that the Tc was as high as 400 K. These results provide important information on the optical and magnetic properties for enhancing the Tc of (In1−xMnx)As-based nanostructures.  相似文献   

6.
We have investigated the temperature and composition dependent photoluminescence (PL) spectra in Ga1−xMnxN layers (where x ≈ 0.1-0.8%) grown on sapphire (0 0 0 1) substrates using the plasma-enhanced molecular beam epitaxy technique. The efficient PL is peaked in the red (1.86 eV), yellow (2.34 eV), and blue (3.29 eV) spectral range. The band-gap energy of the Ga1−xMnxN layers decreased with increasing temperature and manganese composition. The band-gap energy of the Ga1−xMnxN layers was modeled by the Varshni equation and the parameters were determined to be α = 2.3 × 10−4, 2.7 × 10−4, 3.4 × 10−4 eV/K and β = 210, 210, and 230 K for the manganese composition x = 0.1%, 0.2%, and 0.8%, respectively. As the Mn concentration in the Ga1−xMnxN layers increased, the temperature dependence of the band-gap energy was clearly reduced.  相似文献   

7.
The effects of the In-mole fraction (x) of an InxGa1−xN back barrier layer and the thicknesses of different layers in pseudomorphic AlyGa1−yN/AlN/GaN/InxGa1−xN/GaN heterostructures on band structures and carrier densities were investigated with the help of one-dimensional self-consistent solutions of non-linear Schrödinger-Poisson equations. Strain relaxation limits were also calculated for the investigated AlyGa1−yN barrier layer and InxGa1−xN back barriers. From an experimental point of view, two different optimized structures are suggested, and the possible effects on carrier density and mobility are discussed.  相似文献   

8.
Mn-doped GaN films (Ga1−xMnxN) were grown on sapphire (0 0 0 1) using Laser assisted Molecular Beam Epitaxy (LMBE). High-quality nanocrystalline Ga1−xMnxN films with different Mn concentration were then obtained by thermal annealing treatment for 30 min in the ammonia atmosphere. Mn ions were incorporated into the wurtzite structure of the host lattice by substituting the Ga sites with Mn3+ due to the thermal treatment. Mn3+, which is confirmed by XPS analysis, is believed to be the decisive factor in the origin of room-temperature ferromagnetism. The better room-temperature ferromagnetism is given with the higher Mn3+ concentration. The bound magnetic polarons (BMP) theory can be used to prove our room-temperature ferromagnetic properties. The film with the maximum concentration of Mn3+ presents strongest ferromagnetic signal at annealing temperature 950 °C. Higher annealing temperature (such as 1150 °C) is not proper because of the second phase MnxGay formation.  相似文献   

9.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

10.
Ferromagnetic Ga1−xMnxAs epilayers with Mn mole fraction in the range of x≈2.2-4.4% were grown on semi-insulating (100) GaAs substrates using the molecular beam epitaxy technique. The transport properties of these epilayers were investigated through Hall effect measurements. The measured hole concentration of Ga1−xMnxAs layers varied from 4.4×1019 to 3.4×1019 cm−3 in the range of x≈2.2-4.4% at room temperature. From temperature dependent resisitivity data, the sample with x≈4.4% shows typical behavior for insulator Ga1−xMnxAs and the samples with x≈2.2 and 3.7% show typical behavior for metallic Ga1−xMnxAs. The Hall coefficient for the samples with x≈2.2 and 4.4% was fitted assuming a magnetic susceptibility given by Curie-Weiss law in a paramagnetic region. This model provides good fits to the measured data up to and the Curie temperature Tc was estimated to be 65, 83 K and hole concentration p was estimated to be 5.1×1019, 4.6×1019 cm−3 for the samples with x≈2.2 and 4.4%, respectively, confirming the existence of an anomalous Hall effect for metallic and insulating samples.  相似文献   

11.
[ ]Cd1−x Mnx Ga2S4 is a semimagnetic semiconductor and it has revealed an exceptional property namely ‘optical activity‘. Therefore, a spectroscopic investigation of chiral absorption bands has been carried out with the view to examine the role of d*-d states of manganese atoms. It has been found that inner transitions of Mn++ dominate the spectral region with a special feature, indicating that these transitions show the presence of a substantial contribution from the magnetic dipole moment which rotates the electric vector of the incident polarized radiation. The origin is associated to the lack of a symmetry center caused by the ordered vacancies in this defect compound.  相似文献   

12.
Semiconductor optoelectronic devices based on GaN and on InGaN or AlGaN alloys and superlattices can operate in a wide range of wavelengths, from far infrared to near ultraviolet region. The efficiency of these devices could be enhanced by shrinking the size and increasing the density of the semiconductor components. Nanostructured materials are natural candidates to fulfill these requirements. Here we use the density functional theory to study the electronic and structural properties of (10,0) GaN, AlN, AlxGa1 − xN nanotubes and GaN/AlxGa1 − xN heterojunctions, 0<x<1. The AlxGa1 − xN nanotubes exhibit direct band gaps for the whole range of Al compositions, with band gaps varying from 3.45 to 4.85 eV, and a negative band gap bowing coefficient of −0.14 eV. The GaN/AlxGa1 − xN nanotube heterojunctions show a type-I band alignment, with the valence band offsets showing a non-linear dependence with the Al content in the nanotube alloy. The results show the possibility of engineering the band gaps and band offsets of these III-nitrides nanotubes by alloying on the cation sites.  相似文献   

13.
We show that the large band offsets between GaN and InN and the heavy carrier effective masses preclude the use of the virtual crystal approximation to describe the electronic structure of Ga1−xInxN/GaN heterostructures, while this approximation works very well for the Ga1−xInxAs/GaAs heterostructures.  相似文献   

14.
We present numerical optimization of carrier confinement characteristics in (AlxGa1−xN/AlN)SLs/GaN heterostructures in the presence of spontaneous and piezoelectrically induced polarization effects. The calculations were made using a self-consistent solution of the Schrödinger, Poisson, potential and charge balance equations. It is found that the sheet carrier density in GaN channel increases nearly linearly with the thickness of AlN although the whole thickness and equivalent Al composition of AlxGa1−xN/AlN superlattices (SLs) barrier are kept constant. This result leads to the carrier confinement capability approaches saturation with thicknesses of AlN greater than 0.6 nm. Furthermore, the influence of carrier concentration distribution on carrier mobility was discussed. Theoretical calculations indicate that the achievement of high sheet carrier density is a trade-off with mobility.  相似文献   

15.
Injection of spin-polarized current into spintronic devices is a challenge to the semiconductor physicists and technologists. II-VI compound semiconductors can act as the spin aligner on the top of GaAs light emitting diode. However, II-VI compound semiconductor like Cd1−xMnxTe is still suffering from contacting problem. Application of electroless deposited magnetic NiP:Mn contact would enhance efficient current injection into Cd1−xMnxTe than the standard gold contact. A technique for electroless deposition of NiP:Mn on Cd1−xMnxTe have been described here. The electronic and magnetic properties of the contact material NiP:Mn and the contact performance of NiP:Mn relative to evaporated gold have been evaluated. The contact fulfills the requirements of resistivity and ferromagnetism for application to Cd1−xMnxTe.  相似文献   

16.
Tunneling induced electron transfer in SiNx/Al0.22Ga0.78N/GaN based metal-insulator-semiconductor (MIS) structures has been investigated by means of capacitance-voltage (C-V) measurements at various temperatures. Large clock-wise hysteresis window in C-V profiles indicates the injection of electrons from the two-dimensional electron gas (2DEG) channel to the SiNx layer. Depletion of the 2DEG at positive bias in the negative sweeping direction indicates that the charges injected have a long decay time, which was also observed in the recovery process of the capacitance after injection. The tunneling induced electron transfer effect in SiNx/Al0.22Ga0.78N/GaN based MIS structure opens up a way to design AlxGa1−xN/GaN based variable capacitors and memory devices.  相似文献   

17.
Polycrystalline Sn1−xMnxO2 (0≤x≤0.05) diluted magnetic semiconductors were prepared by solid-state reaction method and their structural and magnetic properties had been investigated systematically. The three Mn-doped samples (x=0.01, 0.03, 0.05) undergo paramagnetic to ferromagnetic phase transitions upon cooling, but their Curie temperatures are far lower than room temperature. The magnetization cannot be attributed to any identified impurity phase. It is also found that the magnetization increases with increasing Mn doping, while the ratio of the Mn ions contributing to ferromagnetic ordering to the total Mn ions decreases.  相似文献   

18.
The magnetic properties of the Ca1−xMnxO systems in the range 0?x?1 have been studied by mean field theory and high-temperature series expansions (HTSEs). By using the first theory, we have evaluated the nearest neighbour and the next-neighbour super-exchange interaction J1(x) and J2(x) respectively, in the range 0.45?x?1. The corresponding classical exchange energy for magnetic structure is obtained for the Ca1−xMnxO systems. The HTSEs combined with the Padé approximants (PA) method is applied to the Ca1−xMnxO systems; we have obtained the magnetic phase diagrams (TN or TSG versus dilution x) in the range 0?x?1. The obtained theoretical results are in agreement with experimental ones obtained by magnetic measurements. The critical exponents associated with the magnetic susceptibility (γ) and the correlation lengths (ν) are deduced in the range 0?x?1.  相似文献   

19.
The electronic and structural properties of zigzag aluminum nitride (AlN), gallium nitride (GaN) nanoribbons and AlxGa1−xN nanoribbon heterojunctions are investigated using the first-principles calculations. Both AlN and GaN ribbons are found to be semiconductor with an indirect band gap, which decreases monotonically with the increased ribbon width, and approaching to the gaps of their infinite two dimensional graphitic-like monolayer structures, respectively. Furthermore, the band gap of AlxGa1−xN nanoribbon heterojunctions is closely related to Al (and/or Ga) concentrations. The AlxGa1−xN nanoribbon of width n=8 shows a continuously band gap varying from about 2.2 eV-3.1 eV as x increases from 0 to 1. The large ranged tunable band gaps in such a quasi one dimension structure may open up new opportunities for these AlN/GaN based materials in future optoelectronic devices.  相似文献   

20.
The magnetization and electrical resistivity of Mn3−xFexSnC (0.5≤x≤1.3) were measured to investigate the behavior of the complicated magnetic phase transitions and electronic transport properties from 5 to 300 K. The results obtained demonstrate that Fe doping at the Mn sites of Mn3SnC induces a more complicated magnetic phase transition than that in its parent phase Mn3SnC from a paramagnetic (PM) state to a ferrimagnetic (FI) state consisting of antiferromagnetic (AFM) and ferromagnetic (FM) components, while, with the change of Fe-doped content and magnetic field, there is a competition between the AFM component and FM component in the FI state. Both the Curie temperature (TC) and the saturated magnetization Ms increase with increasing x. The FM component region becomes broader with further increasing Fe-doped content x. The external magnetic field easily creates a saturated FM state (and increased TC) when . Fe doping quenches the negative thermal expansion (NTE) behavior from 200 to 250 K reported in Mn3SnC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号