首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined magnetizations as a function of temperature and magnetic field in layered perovskite manganites La2−2xSr1+2xMn2O7 single crystals (x=0.313, 0.315, 0.318, 0.320 and 0.350) in order to determine the phase boundary between two ferromagnets (one is an uniaxial ferromagnet whose easy axis is parallel to the c-axis and the other is a planar ferromagnet whose easy axis is within the ab-plane) and following results are obtained: (i) all the present manganites exhibit magnetic transitions from a ferromagnet to a paramagnet at 76, 107, 116, 120 and 125 K for x=0.313, 0.315, 0.318, 0.320 and 0.350, respectively; (ii) for x=0.318, 0.320 and 0.350, the magnetic structure is a planar ferromagnet below Curie temperature; (iii) for x=0.313 and 0.315, the magnetic structure changes from an uniaxial to a planar ferromagnet at 66 and 85 K, respectively. From the results described above we have constructed the magnetic phase diagram of layered perovskite manganite La2−2xSr1+2xMn2O7 (0.313?x?0.350).  相似文献   

2.
A thorough understanding of the magnetocaloric properties of existing magnetic refrigerant materials has been an important issue in magnetic refrigeration technology. This paper reviews a new class of magnetocaloric material, that is, the ferromagnetic perovskite manganites (R1−xMxMnO3, where R=La, Nd, Pr and M=Ca, Sr, Ba, etc.). The nature of these materials with respect to their magnetocaloric properties has been analyzed and discussed systematically. A comparison of the magnetocaloric effect of the manganites with other materials is given. The potential manganites are nominated for a variety of large- and small-scale magnetic refrigeration applications in the temperature range of 100–375 K. It is believed that the manganite materials with the superior magnetocaloric properties in addition to cheap materials-processing cost will be the option of future magnetic refrigeration technology.  相似文献   

3.
Following the double metal-insulator peaks found in series of perovskite manganites La0.7−xPrxPb0.3MnO3 (x=0, 0.05, 0.1), the magnetic entropy change of La0.6Pr0.1Pb0.3MnO3 was carefully investigated as a representative. The maximum magnetic entropy change (ΔSH=−1.7 J/kg K at 300 K) and the expanded refrigerant capacity (about 123.8 J/kg) had been obtained under 10 kOe magnetic field variation, though the double peak of maximum magnetic entropy change had not occurred since the comparative faint magnetic signal from the Pr ions inhomogeneity existed in the octahedral frame submerged in the strong magnetic signal originated from the dominating octahedral frame both in the double exchange mechanism, but the width at half maximum in the magnetic entropy change comparatively broadened.  相似文献   

4.
In this work, we have investigated the effect of the substitution of Gd for Pr on the crystal structure and magnetic properties of the Pr1−xGdxCo4B compounds for 0?x?1 using X-ray powder diffraction, magnetic measurements, and differential scanning calorimetry (DSC). These compounds have hexagonal CeCo4B-type structure with the space group P6/mmm. The substitution of Gd for Pr leads to a decrease of the unit-cell parameters a and the unit-cell volume V, while the unit-cell parameter c increases slightly. Magnetic measurements indicate that all samples are ordered magnetically below room temperature. The Curie temperatures determined by DSC technique increase as Pr is substituted by Gd. The saturation magnetization at 5 K decreases upon Gd substitution up to x=0.6, and then increases again.  相似文献   

5.
Molecular magnet {NBu4[Fe Cr(ox)3]}x (NBu4+=tetra(n-buty1) ammonium ion; ox2−=oxalate ion) was synthesized under an applied low magnetic field of 0.3 T in comparison to that synthesized without a field. Their crystallinities, morphologies and magnetic properties were characterized by using the X-ray diffractionmeter, the transmission electron microscope, and a superconducting quantum interference device. It is found that the average size of particles synthesized under the applied field appears larger than that synthesized without a field. Moreover, its crystallinity, morphology and magnetic susceptibility have also been improved. However, its chemical structure and ferromagnetic phase transition temperature Tc do not change. Possible reasons to explain this effect are also discussed.  相似文献   

6.
An experimental study on the magnetic and electrical transport properties of the manganites Bi0.5Ca0.5Mn1−xCrxO3 (BCMCO) (0≤x≤0.12) is carried out. The results show that Cr doping can suppress the charge-ordering transition, favoring the ferromagnetic clusters. For x=0.12, the charge-ordering transition disappears but a very broad paramagnetic-ferromagnetic-like transition is detected at the Curie temperature TC=72.6 K. It is caused by phase separation or coexistence of the charge-ordering and ferromagnetic phase. Moreover, the critical Cr content to destroy charge ordering phase in BCMCO does not match the general monotonous tendencies shown by Cr-doped Re0.5Ca0.5MnO3 (Re-rare-earth). These differences are ascribed to the fact that the ground state in BCMCO differs markedly from the ferromagnetic metallic phase in Cr-doped Re0.5Ca0.5MnO3 compounds.  相似文献   

7.
Spin glass (SG) is observed in semiconducting solid solutions xCuCr2Se4-(1?x)Cu0.5Me0.5Cr2Se4 (Me = In, Ga) for 0?x?0.1. For x0.1 the material exhibits p-type metal conductivity. For x?0.6 the magnetic properties are purely ferromagnetic (FM), while for 0.1 <x?0.2 an unusual mixed two-phase SG+FM state is found. Indirect exchange via charge carriers is assumed to be responsible for SG suppression.  相似文献   

8.
In this paper, the effect of microstructural and surface morphological developments on the soft magnetic properties and giant magneto-impedance (GMI) effect of Fe73.5−xCrxSi13.5B9Nb3Au1 (x=1, 2, 3, 4, 5) alloys was investigated. It was found that the Cr addition causes slight decrease in the mean grain size of α-Fe(Si) grains. AFM results indicated a large variation of surface morphology of density and size of protrusions along the ribbon plane due to structural changes caused by thermal treatments with increasing Cr content. Ultrasoft magnetic properties such as the increase of magnetic permeability and the decrease of coercivity were observed in the samples annealed at 540 °C for 30 min. Accordingly, the GMI effect was also observed in the annealed samples.  相似文献   

9.
Nanocrystalline La1−xBaxMnO3 (0.0≤x≤0.3) manganites have been prepared by a simple and instantaneous solution combustion method, which is a low temperature initiated synthetic route to obtain fine-grained powders with relatively high surface area. The phase purity and crystal structure of the combustion products are carried out by powder X-ray diffraction. The as-made nanopowders are in cubic phase. On calcination to 900 °C, barium doped manganites retain cubic phase, whereas barium free manganite transformed to rhombohedral phase. The scanning electron microscope (SEM) results revealed that the combustion-derived compounds are agglomerated with fine primary particles. The doped manganites have surface area in the range 24-44 m2/g. The surface area of the manganites increases with barium content, whereas it decreases on calcination. Both undoped and doped lanthanum manganites show two active IR vibrational modes at 400 and 600 cm−1. The low temperature resistivity measurements have been carried out by four-probe method down to 77 K. All the samples exhibit metal-insulator behaviour and metal-insulator transition temperature (TM-I) in the range 184-228 K and it is interesting to note that, as the barium content increases the TM-I shifts to lower temperature side. The maximum TM-I of 228 K is observed for La0.9Ba0.1MnO3 sample.  相似文献   

10.
The magnetic properties have been studied for the series of RNi5−xCux intermetallics with R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu; x  ?2.5. Compositional dependences of magnetic susceptibility for the Pauli paramagnets (R=Y, La, Ce, Lu) and the Curie temperature for ferromagnets (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm) have maximum at x=0.2–0.4x=0.20.4 and 1, respectively. The substitution of Cu for Ni is accompanied by decreasing spontaneous magnetic moment and increasing coercive force of all ferromagnetic RNi5−xCux but GdNi5−xCux. These results are explained in the frame of band magnetism, random local crystal field, and domain wall pinning theories.  相似文献   

11.
Magnetic properties of four sigma-phase Fe100−xVx samples with 34.4?x?55.1 were investigated by Mössbauer spectroscopy and magnetic measurements in the temperature interval 4.2-300 K. Four magnetic quantities, viz. hyperfine field, Curie temperature, magnetic moment and susceptibility, were determined. The sample containing 34.4 at% V was revealed to exhibit the largest values found up to now for the sigma-phase for average hyperfine field, 〈B〉=12.1 T, average magnetic moment per Fe atom, 〈μ〉=0.89 μB, and Curie temperature, TC=315.3 K. The quantities were shown to be strongly correlated with each other. In particular, TC is linearly correlated with 〈μ〉 with a slope of 406.5 K/μB, as well as 〈B〉 is so correlated with 〈μ〉, yielding 14.3 T/μB for the hyperfine coupling constant.  相似文献   

12.
Studies of the structural, magnetic and magnetocaloric properties of polycrystalline Pr0.6−xEuxSr0.4MnO3 (0≤x≤0.15) perovskite manganites were carried out. Substitution for praseodymium with europium, with smaller ionic radius, induces local distortion in the 〈Mn–O–Mn〉 bonds and consequently causes a random distribution in the magnetic exchange interactions. The competition between magnetic interactions leads to the appearance of an inhomogeneous magnetic state in our samples. Pr0.6−xEuxSr0.4MnO3 (x=0, 0.05, 0.1 and 0.15) polycrystalline samples were prepared using the solid–solid reaction method at high temperature. The compounds yielded are single phase and crystallize in the orthorhombic system with the Pnma space group. The substitution of Eu for Pr leads to a decrease of the Curie temperature TC from 303 K for x=0.00 to 260 K for x=0.15. All of our compounds exhibit a large magnetic entropy change with a maximum around 2.2 J/kg K under a magnetic applied field change of 2 T for all compounds.  相似文献   

13.
Lanthanum based mixed valence manganite system La1−xCax−0.08Sr0.04Ba0.04MnO3 (LCSBMO; x=0.15, 0.24 and 0.33) synthesized through the sol-gel route is systematically investigated in this paper. The electronic transport and magnetic susceptibility properties are analyzed and compared, apart from the study of unit cell structure, microstructure and composition. Second order phase transition is observed in all the samples and significant difference is observed between the insulator to metal transition temperature (TMI) and paramagnetic (PM) to ferromagnetic (FM) transition temperature (TC). In contrast to the insulating FM behaviour usually observed in La1−xCaxMnO3 (LCMO) for x=0.15, a clear insulator to metal transition is observed for LCSBMO for the same percentage of lanthanum. The temperature dependent resistivity of polycrystalline pellets, when obeying the well studied law ρ=ρo+ρ2T2 for T<TMI, is observed to differ significantly in the values of ρo and ρ2, with the electrical conductivity increasing with x. The variable range hopping model has been found to fit resistivity data better than the small polaron model for T>TMI. AC magnetic susceptibility study of the polycrystalline powders of the manganite system shows the highest PM to FM transition of 285 K for x=0.33.  相似文献   

14.
The magnetic properties of RNi4Ga (R=La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu) compounds have been investigated. These compounds form in a hexagonal CaCu5 type structure with a space group P6/mmm. Compounds with the magnetic rare earths, R= Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm, undergo a ferromagnetic transition at 5, 17, 20, 19, 12, 3.5, 8 and 6.5 K, respectively. The transition temperatures are smaller compared to their respective parent compounds RNi5. PrNi4Ga is paramagnetic down to 2 K. LaNi4Ga and LuNi4Ga are Pauli paramagnets. All the compounds show thermomagnetic irreversibility in the magnetically ordered state except GdNi4Ga.  相似文献   

15.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

16.
The crystal structure and electromagnetic properties as well as thermal stability of the A-site ordered PrBaMn2O6 manganites have been investigated. These samples have been prepared by using ‘two-steps’ synthesis mode. They have tetragonal structure with no tilt of MnO6 octahedra and show ferromagnetic metal to paramagnetic semiconductor transition. The most significant structural feature of the A-site ordered manganites is that the MnO2 sublattice is sandwiched by two types of rock-salt layers PrO and BaO. The different degree of Pr and Ba ions in the A-sublattice is revealed. The A-site ordered PrBaMn2O6 sample with maximum degree of the A-site order demonstrates ferromagnetic metallic to paramagnetic insulating transition with the Curie point ∼320 K. The A-site disordered Pr0.50Ba0.50MnO3 sample is ferromagnetic metal below TC≈140 K. The cation order in these compounds is stable in air up to 1300 °C. For the partly A-site ordered samples the magnetic and electronic phase separation is observed. The magnetotransport properties of the A-site ordered manganites treated under different conditions are discussed in terms of the superexchange interactions and A-site order degree.  相似文献   

17.
In this paper, magnetic property and magnetocaloric effect (MCE) in nanoparticles perovskite manganites of the type (La0.67−xGdx)Sr0.33MnO3 (x=0.10, 0.15, 0.20) synthesized by using an amorphous molecular alloy as precursor have been reported. From the magnetic measurements as function of temperature and magnetic applied field, we have discovered that the Curie temperature (TC) of the prepared samples is found to be strongly dependent on Gd content. The Curie temperature of samples is 358.4, 343.2, and 285.9 K for x=0.1, 0.15, and 0.2, respectively. A large magnetocaloric effect close to TC has been observed with a maximum of magnetoentropy change in all the samples, ∣ΔSMmax of 1.96 and 4.90 J/kg K at 2 and 5 T, respectively, for a substitution rate of 0.15. In addition, the maximum magnetic entropy change observed for samples with different concentration of Gd, exhibits a linear dependence with the applied high magnetic field. These results suggest that (La0.67−x Gdx)Sr0.33MnO3 (x=0.10, 0.15, 0.20) compounds could be a suitable candidate as working substance in magnetic refrigeration near room temperature.  相似文献   

18.
Amorphous soft magnetic ribbons Fe73.5−xCrxSi13.5B9Nb3Cu1 (x=1–5) have been fabricated by rapid quenching on a single copper wheel. The differential scanning calorimetry (DSC) patterns showed that the crystallization temperature of α-Fe(Si) phase is ranging from 542 to 569 °C, a little higher than that of pure Finemet (x=0). With the same annealing regime, the crystallization volume fraction as well as the particle size of α-Fe(Si) crystallites decreased with increasing Cr amount substituted for Fe in studied samples. Especially, the interesting fact is that the laminar structure of heat-treated ribbons on the surface contacted to copper wheel in the fabricating process has been firstly discovered and explained to be related to the existence of Cr in studied samples. The hysteresis loop measurement indicated that there is the pinning of displacement of domain walls. The giant magnetocaloric effect (GMCE) has been found in amorphous state of the samples. After annealing, the soft magnetic properties of investigated nanocomposite materials are desirably improved.  相似文献   

19.
X-band electron magnetic resonance (EMR) measurements were done at 115?T?600 K on bulk and nanometer size-grain powder single-crystalline samples of La0.9Ca0.1MnO3, in order to study an impact of structural inhomogeneity on magnetic ordering. For the nano-crystal sample, two superimposed EMR lines are observed below 240 K, while for bulk-crystal one, a second line emerges in narrow temperature interval below 130 K. Temperature dependences of resonance field and line width of the main and the secondary line are drastically different. EMR data and complementary magnetic measurements of bulk-crystal sample reveal mixed-magnetic phase, which agrees with the published phase diagram of bulk La1−xCaxMnO3. In a marked contrast, the same analysis for nano-crystal sample shows two phases one of which is definitely ferromagnetic (FM) and other is likely such, or super paramagnetic. The data obtained are interpreted in terms of very different magnetic ground states in the two samples, that is attributed to different randomness of the indirect FM exchange interactions mediated by bound holes.  相似文献   

20.
We have investigated the magnetic phase diagram of polycrystalline and single-crystal La1−xSrxMnO3 near 0.46≤x≤0.50. It turns out that for x<0.48, the polycrystalline material is ferromagnetic (FM), but for x≥0.48, incipient charge ordering takes place along with antiferromagnetism. At x=0.48, the ferromagnetic-antiferromagnetic phase transition in ceramics occurs at less than 85 kOe but requires significantly larger field for increasing x. These observations are in contrast to what is found in the single crystals, which are all FM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号