首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Highly c-axis oriented neodymium-modified bismuth titanate (Bi4−xNdxTi3O12) films having a variety of neodymium (Nd) contents were successfully grown on Pt/TiO2/SiO2/Si(100) substrates using metal-organic sol decomposition. After systematically examining ferroelectric properties of the c-axis oriented Bi4−xNdxTi3O12 film capacitors as a function of the Nd-content, we concluded that the capacitor with x=0.85 had the largest remanent polarization. The Bi3.15Nd0.85Ti3O12 capacitor fabricated using a top Pt electrode showed well-saturated polarization-electric field (P-E) switching curves with the remanent polarization (Pr) of 51 μC/cm2 and the coercive field (Ec) of 99 kV/cm at an applied voltage of 10 V. More importantly, the Pt/Bi3.15Nd0.85Ti3O12/Pt capacitor exhibited fatigue-free behavior up to 4.5×1010 read/write switching cycles at a frequency of 1 MHz. The capacitor also demonstrated an excellent charge-retaining ability and a strong resistance against the imprinting failure.  相似文献   

2.
Highly c-axis oriented lanthanum-modified bismuth titanate (Bi4−xLaxTi3O12) films having a variety of lanthanum (La) contents were grown on Pt/TiO2/SiO2/Si(100) substrates using metal-organic sol deposition and subsequent annealing at 650 °C for 1 h. After systematically examining the ferroelectric properties of Bi4−xLaxTi3O12 films as a function of the La-content, it was concluded that the film with x=0.85 had the largest remanent polarization in the direction parallel to the c-axis. The Pt/Bi3.15La0.85Ti3O12/Pt capacitor showed a well-saturated polarization-electric field (P-E) switching curve with the switching remanent polarization (2Pr) value of 33 μC/cm2 and the coercive field (Ec) of 68 kV/cm at an applied voltage of 10 V. More importantly, the capacitor exhibited fatigue-free behavior up to 6.5×1010 read/write switching cycles at a frequency of 1 MHz. The capacitor also demonstrated an excellent charge-retaining ability and a strong resistance against the imprinting failure.  相似文献   

3.
Highly (100)-oriented, compositionally graded (Pb,Ca)TiO3 (PCT) thin films with a Ca content from 0 to 24 mol% on Pt/Ti/SiO2/Si substrates were prepared by a sol-gel process. The graded structure of the Au/PCT/Pt film capacitor showed a well-saturated hysteresis loop at an applied field of 500 kV/cm with remanent polarization (Pr), and coercive electric field (Ec) values of 9.35 C/cm2 and 130 kV/cm, respectively. At 100 kHz, the dielectric constant and dielectric loss of the film were 129 and 0.024, respectively. The leakage current density of the graded PCT film was less than 1.0×10-7 A/cm2 over a voltage range from 0 to 4 V. The conduction current depended on the voltage polarity. At low electric field (110 and 180 kV/cm, respectively, for Pt and Au electrodes biased negatively), the Au/PCT and PCT/Pt interfaces form a Schottky barrier. At high electric field (>110 kV/cm), the Au electrode biased negatively shows space-charge-limited current (SCLC) behavior. The temperature dependencies of the pyroelectric coefficients of the graded PCT film were measured by a dynamic technique. From 20 to 82 °C, the pyroelectric coefficients of graded PCT film remain steady in the range 106 to 118 C/m2K. The detectivity figure of merit (FD) of the graded PCT film was 6.7×10-6 Pa-0.5. PACS 77.80.-s; 77.70.+a; 77.22.-d; 51.50.+v; 68.37.-d  相似文献   

4.
Metallo-organic decomposition derived dielectric thin films of calcium zirconate doped with various concentrations of strontium ((Ca, Sr)ZrO3) were prepared on Pt coated silicon substrate. Mainly in this paper, we present the investigations of their structural developments and present their electric and dielectric properties as well. The structural developments show that the CaZrO3 film has amorphous structure with carbonate existing when annealed at 600 °C, while annealed at 650 °C and above, the carbonate is decomposed and those films crystallize into perovskite phase without preferred orientation. In addition, the prepared (Ca, Sr)ZrO3 films with their Zr-O bonds affected by strontium doping are homogenous and stable as solid solutions in any concentration of strontium and all Bragg diffraction characteristics for the films shift downward with the increase in the concentration of strontium. Moreover, the electric properties show that the (Ca, Sr)ZrO3 films have very low leakage current density and high breakdown strength; typically, the CaZrO3 film annealed at 650 °C has the leakage current density approximately 9.5 × 10−8 A cm−2 in the field strength of 2.6 MV cm−1. Furthermore, the dielectric properties show that their dielectric constants are higher than 12.8 with very little dispersion in the frequency range from 100 Hz to 1 MHz and are independent of applied dc bias as well. The dielectric properties, in combination with the electric properties, make the materials promising candidates for high-voltage and high-reliability capacitor applications.  相似文献   

5.
The effects of vanadium(V) doping into SrBi4Ti4O15 (SBTi) thin films on the structure, ferroelectric, leakage current, dielectric, and fatigue properties have been studied. X-ray diffraction result showed that the crystal structure of the SBTi thin films with and without vanadium is the same. Enhanced ferroelectricity was observed in the V-doped SrBi4Ti4O15 (SrBi4−x/3Ti4−xVxO15, SBTiV-x (x = 0.03, 0.06, and 0.09)) thin films compared to the pure SrBi4Ti4O15 thin film. The values of remnant polarization (2Pr) and coercive field (2Ec) of the SBTiV-0.09 thin film capacitor were 40.9 μC/cm2 and 105.6 kV/cm at an applied electric field of 187.5 kV/cm, respectively. The 2Pr value is over five times larger than that of the pure SBTi thin film capacitor. At 100 kHz, the values of dielectric constant and dielectric loss were 449 and 0.04, and 214 and 0.06 for the SBTiV-0.09 and the pure SBTi thin film capacitors, respectively. The leakage current density of the SBTiV-0.09 thin film capacitor measured at 100 kV/cm was 6.8 × 10−9 A/cm2, which is more than two and a half orders of magnitude lower than that of the pure SBTi thin film capacitor. Furthermore, the SBTiV-0.09 thin film exhibited good fatigue endurance up to 1010 switching cycles. The improved electrical properties may be related to the reduction of internal defects such as bismuth and oxygen vacancies with changes in the grain size by doping of vanadium into SBTi.  相似文献   

6.
Strontium and calcium-modified lead titanate (Pb0.70Ca0.15Sr0.15)TiO3 soft chemistry-derived thin films were prepared on platinum-coated silicon substrate by spin-coating method. Investigations were made on the structure, surface morphology and electrical properties of the film. The results by XRD and FE-SEM showed that the film exhibits a pure tetragonal perovskite phase and an average grain size of about 50-60 nm, respectively. Electrical measurements of a metal-ferroelectric-metal type capacitor exhibited a stable and switchable electrical polarization in the film. The structure of the Au/PCST/Pt capacitor showed well-saturated hysteresis loops at an applied voltage of 300 kV/cm with remanent polarization and coercive field values of 22 μC/cm2 and 100 kV/cm, respectively. At 100 kHz, the dielectric constant and the dielectric loss of the (Pb0.70Ca0.15Sr0.15)TiO3 thin film with thickness 240 nm were 528 and 0.05, respectively.  相似文献   

7.
Bismuth doped bismuth sodium titanate ceramics [(Bi1/2Na1/2)(1−1.5x)BixTiO3, x=0 to 0.06] were prepared, and the resulting effects on the microstructure and dielectric properties were examined. All of the Bi-doped ceramics exhibited a single phase of perovskite structure with rhombohedral symmetry. The poling leakage current was significantly reduced by the doping of Bi, facilitating the poling process of the ceramics. The doping with Bi enhances the piezoelectric properties and increases the dielectric constant and the dielectric loss of the ceramics. At 2 mol% Bi-doping level, the ceramics exhibit a large remanent polarization of 47 μC/cm2 and a relatively low coercive field of 71 kV/cm, while their d33 and kp reach a maximum value of 95 pC/N and 21%, respectively.  相似文献   

8.
The CaCu3Ti4O12/SiO2/CaCu3Ti4O12 (CCTO/SiO2/CCTO) multilayered films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition method. It has been demonstrated that the dielectric loss and the leakage current density were significantly reduced with the increase of the SiO2 layer thickness, accompanied with a decrease of the dielectric constant. The CCTO film with a 20 nm SiO2 layer showed a dielectric loss of 0.065 at 100 kHz and the leakage current density of 6×10−7 A/cm2 at 100 kV/cm, which were much lower than those of the single layer CCTO films. The improvement of the electric properties is ascribed to two reasons: one is the improved crystallinity; the other is the reduced free carriers in the multilayered films.  相似文献   

9.
Ba0.5Sr0.5Ti0.99Co0.01O3 (BSTC) thin films have been fabricated with pulsed laser deposition on Nb-doped SrTiO3 (STN) substrate. In Pt/BSTC/STN capacitor, we systematically investigated the capacitance, leakage current and polarization versus bias voltage characteristics, and found that curves of capacitance versus voltage and leakage current versus voltage were not symmetric, and polarization hysteresis loop exhibited large relaxation of the remnant polarization at negatively poled state. A detailed analysis of capacitance data demonstrated a difference of the built-in voltage between top Pt/BSTC interface (Vb,t=2.5 V) and bottom BSTC/STN interface (Vb,b=1.1 V). Such different built-in voltages lead to the presence of an internal electric field, which results in asymmetric electric characteristics in Pt/BSTC/STN capacitor.  相似文献   

10.
Bottom gate type Al/Si:8.2 at%Ce/YMnO3/Pt capacitor was fabricated. Although it was polycrystalline, we successfully obtained Si:8.2 at%Ce film on ferroelectric YMnO3. The dielectric properties of the capacitor were carefully investigated. Although the capacitance shows frequency dispersion, the capacitor exhibits a ferroelectric type C-V hysteresis loop. From the PUND and P-V measurements, ferroelectric polarization was distinguished from the another polarization, Based on these dielectric measurements, effect of polarization induced by the ferroelectric YMnO3 on the carrier modulation in the diluted magnetic semiconductor, Ce doped Si film was discussed.  相似文献   

11.
La0.5Sr0.5CoO3 (LSCO) films have been grown on Si (100) by a metalorganic chemical liquid deposition (MOCLD) technique using lanthanum acetate, strontium acetate and cobalt acetate as the starting materials. Subsequent PbZr0.5Ti0.5O3 (PZT) films were deposited onto LSCO films by a modified sol-gel method. Field-emission scanning electron microscopy and X-ray diffraction analysis show that PZT and LSCO films are polycrystalline and entirely perovskite phase. At an applied electric field of 250 kV/cm, the Pt/PZT/LSCO capacitor shows no polarization fatigue after 3×109 switching cycles and an internal electric field; the remnant polarization Pr and the coercive field Ec are about 22 μC/cm2 and 73 kV/cm, respectively. The dielectric constant of PZT films is 650 at a frequency of 1 kHz. Received: 20 February 2001 / Accepted: 6 June 2001 / Published online: 30 August 2001  相似文献   

12.
Six types of BiFeO3 ceramic samples, with subtle differences in synthesis conditions, were prepared. The comparison of their phases, electrical resistivity, and porosity revealed that the use of Bi2O3 and Fe2O3 powders of <1 μm size and a rapid liquid-phase sintering process of 855 °C for 5 min at 100 °C/s is beneficial to synthesize poreless single-phase BiFeO3 samples with high electrical resistivity of ∼5×1012 Ω cm. Deoxygenated BixFeyO1.5x+1.5yδ (xy, δ≥0) impurities were identified and found to be the main cause of low electrical resistivity and high porosity in the multi-phase samples. Large saturation polarization of 16.6 μC/cm2 and low leakage current density of 30 mA/m2, both at a high electric field of 145 kV/cm, were measured in the optimized single-phase samples at room temperature besides a large piezoelectric d33 coefficient of 27 pC/N and an obvious canted antiferromagnetic behavior.  相似文献   

13.
CoFe2O4 (CFO) thin film with highly (111)-preferential orientation was first deposited on the silicon substrate by a pulsed-laser deposition, and then Pb(Zr0.52Ti0.48)O3 (PZT) layers were deposited with different oxygen pressures to form the bilayer CFO/PZT nanocomposite thin films. X-ray diffraction showed that the PZT preferential orientation was strongly dependant on the oxygen pressure. The smooth film surface was obtained after depositing the CFO and PZT layers. The bilayer thin films exhibit good ferromagnetic and ferroelectric properties, and a low leakage current density of 0.004 μA/cm2 at 50 kV/cm. The leakage current density curves show loops for the electric polarized field when the electric field reverses. PACS 77.84.Lf; 75.80+q; 81.05.Zx; 81.15.Fg  相似文献   

14.
Bi3.99Ti2.97V0.03O12 (BTV) thin films were grown by pulsed laser deposition at substrate temperatures ranging between 650 and 750 °C. The structural phase, and orientation of the deposited films were investigated in order to understand the effect of the deposition parameters on the properties of the BTV films. As the substrate temperature was increased to 700 °C, the films started showing a tendency of assuming a c-axis preferred orientation, while at lower temperatures polycrystalline films were formed. The Au/BTV/Pt capacitor showed an interesting dependence of the remnant polarization (Pr) as well as dc leakage current values on the growth temperature. The film deposited at 675 °C showed a very large 2Pr of 42 μC cm−2, which is the largest for BTV thin films among the values reported so far.  相似文献   

15.
Sr2Bi4Ti5O18 (SBTi) and Nd-modified SBTi (SBNT) thin films were deposited on Pt/Ti/SiO2/Si (1 0 0) substrates using a sol-gel method. Structure, morphology and electric properties were investigated systematically. These films were randomly oriented and composed of rod-like grains. The remanent polarization (2Pr) and coercive field (Ec) of SBNT films were 30 μC/cm2 and 55 kV/cm, respectively. This value of 2Pr was much higher than the reported value of SBTi prepared by pulsed-laser deposition. More importantly, the SBNT films showed high fatigue resistance against continuous switching up to 3×109 cycles and excellent charge-retaining ability up to 3×104 s.  相似文献   

16.
Ni-Ti films prepared at 10 W and 70 W by rf magnetron sputtering are investigated as the oxygen diffusion barrier layer, it is found that crystallinity of Ni-Ti film does not greatly depend on the deposition power. X-ray photoelectron spectroscopy indicates that Ni is still in the form of metallic state from the binding energies of both Ni 2p3/2 and Ni 2p1/2 spectra for the sample with 10 W prepared Ni-Ti, however, Ni is oxidized for 70 W prepared Ni-Ti film. Moreover, the (La0.5Sr0.5)CoO3/Pb(Zr0.40Ti0.60)O3/(La0.5Sr0.5)CoO3 capacitor grown on high power prepared Ni-Ti film is leaky, however, the capacitor on low power prepared Ni-Ti film possesses very promising physical properties (i.e. remnant polarization of ∼27 μC/cm2 at 5 V and maximum dielectric constant of 940). Leakage current density of the capacitor grown on low power prepared Ni-Ti film is further investigated, it meets ohmic behavior (<1.0 V) and agrees well with the space-charge-limited current theory (>1.0 V).  相似文献   

17.
(Pb0.95Ca0.05)(Nb0.02Zr0.80Ti0.20)O3 [PCNZT] thin films were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by RF magnetron sputtering with and without a LaNiO3 [LNO] buffer layer. Ca and Nb elements in PZT films enhance the ferroelectric property, LaNiO3 buffer layer improves the crystal quality of the PCNZT thin films. PCNZT thin films possess better ferroelectric property than that of PZT films for Ca and Nb ion substitution, moreover, PCNZT thin films with a LNO buffer layer possess (1 0 0) orientation and good ferroelectric properties with high remnant polarization (Pr = 38.1 μC/cm2), and low coercive field (Ec = 65 kV/cm), which is also better than that of PCNZT thin films without a LNO buffer layer (Pr = 27.9 μC/cm2, Ec = 74 kV/cm). The result shows that enhanced ferroelectric property of PZT films can be obtained by ion substitution and buffer layer.  相似文献   

18.
Bi3.25La0.75Ti3O12 (BLT) thin films were fabricated on Pt/Ti/SiO2/Si(1 0 0) substrates by chemical solution deposition (CSD), and the dependence of ferroelectric and dielectric properties of the as-deposited BLT thin films on excess Bi content in precursor sols was studied. It is found that the prepared BLT thin film shows the best polarization-electric field, capacitance-voltage and dielectric constant (?r)-frequency characteristics, when the value of excess Bi content in precursor sols is 10%. In detail, its remnant polarization (2Pr) value is 40 μC/cm2, the capacitance tunability is 21% measured at room temperature under conditions of an applied voltage of 8 V and measurement frequency of 10 kHz, and the ?r is 696 at 100 kHz frequency.  相似文献   

19.
Mechanisms of leakage current have been investigated in the capacitor consisting of a Ba0.6Sr0.4TiO3 thin film, a Pt top electrode, and a Nb-doped SrTiO3 (STON) bottom electrode. The leakage current shows asymmetric behavior for different bias voltage. For the Pt electrode negatively biased, the leakage current can be explained by modified Schottky emission mechanism, and the barrier height is obtained as 0.44 eV. For the Pt electrode positively biased, the leakage current shows a space-charge-limited current behavior. The trap in dielectric film is regarded as deep traps, and the density of trapped carrier is estimated as about 3.2×1023/m3. PACS 77  相似文献   

20.
SrBi2Ta2O9 (SBT) films were prepared on Pt/TiO2/SiO2/Si substrates at 750 °C in oxygen by metalorganic decomposition method. A low electric field was in situ applied during the film crystallization. It was first found that a low electric field and its direction have significant influence on the microstructures and ferroelectric properties of SBT films. Under a positive electric field (assuming that the bottom electrode is electrically grounded), the films show stronger c-axis-preferred orientation than without electric field and under a negative electric field. As a possible origin is proposed that the interface-induced nucleation growth between SBT and Pt coated substrate with application of low electric field plays a key role. Above all, an in situ applied low electric field during the film crystallization is a promising technique controlling film orientation for film preparation by wet chemical method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号