首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compositional optimization of infrared-transparent conducting oxides was performed using high throughput screening of combinatorial libraries. Complete ternary composition spreads of NiO-Mn2O3-Co3O4 alloys were deposited onto conducting Nb-doped SrTiO3 substrates using the pulsed laser deposition technique. Resistance-temperature relations of each composition in the spread were determined using a custom-designed scanning probe. The binary NiCo2O4 oxide showed the lowest electrical resistivity of about 0.1 Ω cm but unacceptably large resistance-temperature dependence (3.5%/°C). Electrically conducting ternary alloys along the line Mn0.45Ni0.63Co1.92O4-Mn0.60Ni0.72Co1.68O4-Mn0.69Ni0.81Co1.50O4 exhibited much lower temperature sensitivity (of about 1.5%/°C) as well as electrical resistance comparable to that of NiCo2O4. From this screening we propose new compounds for the thin-film ITCO sensors.  相似文献   

2.
This paper describes the fabrication of cobalt ferrite (CoFe2O4) nanostructures (in the form of nanofibers and nanoparticles) by the electrospinning method using a solution that contained poly(vinyl pyrrolidone) (PVP) and cheap Co and Fe nitrates as metal sources. The as-spun and calcined CoFe2O4/PVP composite samples were characterized by TG-DTA, X-ray diffraction, FT-IR, SEM and TEM, respectively. After calcination of the as-spun CoFe2O4/PVP composite nanofibers (fiber size of 320±48 nm in diameter) at 500, 600, and 800°C in air for 3 h with different heating rates of 5 or 20°C/min, either NiFe2O4 nanofibers of ∼10−200 nm in diameter or nanoparticles with particle sizes of ∼50−400 nm having a well-developed spinel structure were successfully obtained. The crystal structure and morphology of the nanofibers were influenced by the calcination temperature and heating rate. A faster heating rate allowed for a rapid removal of the PVP matrix and resulted in a complete change from fibrous structure to particle in the calcined CoFe2O4/PVP composite nanofibers. Room temperature magnetization results showed a ferromagnetic behavior of the calcined CoFe2O4/PVP composite nanofibers, having their hysteresis loops in the field range of ± 4500 and 3000 Oe for the samples calcined respectively with heating rates of 5 and 20°C/min. The values of the specific magnetization (M s) at 10 kOe, remnant magnetization (M r), M r/M s ratio, and coercive forces (H c) are obtained from hysteresis loops. It was found that the values of M s, M r, M r/M s, and H c depended strongly on morphology of the CoFe2O4 nanostructures.  相似文献   

3.
In this study, a simple method to prepare a novel magnetic carrier based on carbon matrix has been built by heating the aqueous solution of glucose and oleic acid-stabilized Fe3O4 nanoparticle at 170 °C for 3 h. The results show that the surface hydrophobic modification of Fe3O4 nanoparticle is necessary for the successful synthesis of Fe3O4/C nanocomposition, and a possible formation mechanism of Fe3O4/C nanocomposition was presented. The influence of the reaction parameters such as the concentration of oleic acid-stabilized Fe3O4 nanoparticle, the reaction time, etc. on the product was also investigated. In the typical reaction (2.5 g/L of oleic acid-stabilized Fe3O4 nanoparticle, 0.5 M of glucose), Fe3O4/C nanocompositions with the average diameter in the range 100–200 nm were obtained and its saturation is 12.4 emu/g. In order to characterize Fe3O4/C nanocompositions, XPS, XRD, FT–IR, and Mössbauer spectra were employed.  相似文献   

4.
Submicron-sized SrFe12−xAlxO19 (x=1.3) was formed in glass-ceramic matrix using controlled thermocrystallization of the SrO–Fe2O3–Al2O3–B2O3 glass and the hexaferrite powder was obtained by removing the matrix phases. The samples were characterized by X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray (EDX) analysis and magnetization measurements. The glass-ceramic material exhibits very high coercivity value up to 10.18 kOe which approaches a theoretically estimated maximum value for the compound. The hexaferrite powder consists of well faceted single crystals, which adopt the shape of a truncated hexagonal bipyramid. The powder saturation magnetization value is close to the theoretically estimated one for bulk material. Crystal structure of the powder was refined by Rietveld method and distribution of Al atoms on Fe sites was determined. Al atoms occupy 41% of 2a sites, 14% of 12k sites and 5% of 4e(1/2) sites, while 4f sites are not affected.  相似文献   

5.
We have demonstrated the crystalline ZnO-Al2O3 core-shell nanowire structure by atomic layer deposition (ALD) at a temperature 100 °C. The core-shell structure could have potential applications in the fabrication of ZnO field effect transistor. After dissolving the ZnO core, shape defined, rigid and robust crystalline Al2O3 shelled nanostructures have been fabricated. Nanowire ZnO nanostructures have been replicated by alumina shell. This is one of the most effective techniques for producing core-shell or shell/hollowed nanostructures of any desired objects. The Al2O3 shelled nanostructures could have potential applications as space confined nanoreactors, drug delivery, nanofluidic channels and optical transmitting.  相似文献   

6.
Previous work by the authors on micromachining of Al2O3-TiC ceramics using excimer laser radiation revealed that a columnar surface topography forms under certain experimental conditions. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations show that the columns develop from small globules of TiC, which appear at the surface of the material during the first laser pulses. To understand the mechanism of formation of these globules, a 2D finite element ablation model was developed and used to simulate the time evolution of the temperature field and of the surface topography when a sample of Al2O3-TiC composite is treated with KrF laser radiation. Application of the model showed that the surface temperature of TiC rises much faster than that of Al2O3, but since TiC has a very high boiling temperature, its vaporization is significant only for a short time. By contrast, the surface temperature of Al2O3 rises above its boiling temperature for a much longer period, leading to a greater ablation depth than TiC. As a result, a small TiC globule stands above the Al2O3 surface. The results of the model are compared with experimental measurements performed by AFM. After three pulses, the height of the globules predicted by the model is about 340 nm, in good agreement with the height measured experimentally, about 400 nm.  相似文献   

7.
A new hierarchical nanostructure that consists of cobalt oxide (Co3O4) and zinc oxide (ZnO) was produced by the electrospinning process followed by a hydrothermal technique. First, electrospinning of a colloidal solution that consisted of zinc nanoparticles, cobalt acetate tetrahydrate and poly(vinyl alcohol) was performed to produce polymeric nanofibers embedding solid nanoparticles. Calcination of the obtained electrospun nanofiber mats in air at 600 °C for 1 h, produced Co3O4 nanofibers with rough surfaces containing ZnO nanoparticles (i.e., ZnO-doped Co3O4 nanofibers). The rough surfaced nanofibers, containing ZnO nanoparticles (ZnNPs), were then exploited as seeds to produce ZnO nanobranches using a specific hydrothermal technique. Scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were employed to characterize the as-spun nanofibers and the calcined product. X-ray powder diffractometery (XRD) analysis was used to study the chemical composition and the crystallographic structure.  相似文献   

8.
ZnO/ZnGa2O4 composite layers were synthesized by simple thermal oxidation of ZnS substrates with gallium in the air. The continuous-wave and time-resolved photoluminescence measurements for the composites were performed at room temperature. It is found that the visible deep level emission from ZnO in ZnO/ZnGa2O4 composite layer was almost suppressed. In addition, the UV emission with long lifetime was also observed in comparison with that of pure ZnO layer without ZnGa2O4.  相似文献   

9.
Potassium titanate nanowires have been synthesized by a hydrothermal method using anatase and brookite nanocrystallites, respectively, as precursors. The corresponding products, alpha- and beta-K2Ti6O13 nanowires, have distinct differences in structure and properties. Under the same conditions, the amount of K intercalated into anatase TiO2 is larger than that into brookite TiO2. The multiple types of reserved short Ti-O bonds in beta-K2Ti6O13 confined the growth of nanowires along the [010] orientation and made the beta-K2Ti6O13 nanowires stubby. The UV-vis absorption spectrum of beta-K2Ti6O13 nanowires showed strong and wide absorption in the ultraviolet and visible region. Beta-K2Ti6O13 is thermodynamically more stable than alpha-K2Ti6O13.  相似文献   

10.
Composite nanofibers with a weight ratio of 30%NiO-70%SiO2 and diameters ranging from 80 to 100 nm were successfully prepared by electrospinning a precursor mixture of polyvinyl alcohol (PVA)/silica/nickel acetate followed by calcination treatment of the electrospun polymer/inorganic composite fibers. The resulting NiO/SiO2 composite nanofibers were characterized by TG-DTA, FT-IR spectroscopy, X-ray diffraction and scanning electron microscopy . The results revealed that the crystalline phase of NiO nanoparticles were formed at a temperature higher than 600 °C. The SEM results show that the morphology of the fibers is affected greatly by the calcination temperature.  相似文献   

11.
In this paper, we report the synthesis of SnO2/ZnO composite nanofibers via electrospinning method. Polyvinyl alcohol (PVA)/zinc acetate/stannous chloride nanofibers were electrospun using a solution containing PVA, zinc acetate and stannous chloride in distilled-water followed by calcination at 650 °C for 2 h, obtaining the related composite nanofibers. The nanofibers were characterized by simultaneous thermal analysis (STA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier Transform Infrared spectroscopy (FTIR). Ethanol sensing of the nanofibers showed a good and desirable sensing behavior such as high sensitivity, quick response and recovery times.  相似文献   

12.
Glass ceramics of the composition xZnO·25Fe2O3·(40−x)SiO2·25CaO·7P2O5·3Na2O were prepared by the melt-quench method using oxy-acetylene flame. Glass-powder compacts were sintered at 1100 °C for 3 h and then rapidly cooled at −10 °C. X-ray diffraction (XRD) revealed 3 prominent crystalline phases: ZnFe2O4, CaSiO3 and Ca10(PO4)6(OH)2. Vibrating sample magnetometer (VSM) data at 10 KOe and 500 Oe showed that saturation magnetization, coercivity and hence hysteresis area increased with the increase in ZnO content. Nano-sized ZnFe2O4 crystallites were of pseudo-single domain structure and thus coercivity increased with the increase in crystallite size. ZnFe2O4 exhibited ferrimagnetism due to the random distribution of Zn2+ and Fe3+ cations at tetrahedral A sites and octahedral B sites. This inversion/random distribution of cations was probably due to the surface effects of nano-ZnFe2O4 and rapid cooling of the material from 1100 °C (thus preserving the high temperature state of the random distribution of cations). Calorimetric measurements were carried out using magnetic induction furnace at 500 Oe magnetic field and 400 KHz frequency. The data showed that maximum specific power loss and temperature increase after 2 min were 26 W/g and 37 °C, respectively for the sample containing 10% ZnO. The samples were immersed in simulated body fluid (SBF) for 3 weeks. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDX) and XRD results confirmed the growth of precipitated hydroxyapatite phase after immersion in SBF, suggesting that the ferrimagnetic glass ceramics were bioactive and could bond to the living tissues in physiological environment.  相似文献   

13.
Magnetic composites were obtained in the system SrO–Fe2O3–B2O3 by oxide glass heat treatment at 600–950 °C. Samples of the composites were investigated using XRD analysis, magnetic measurements, electron microcopy, and thermal analysis. It was shown that chemical composition of the precursor oxide glass and thermal treatment conditions influenced on the SrFe12O19 particles morphology and magnetic properties. The composites and powders were obtained containing hexaferrite as single domain platelet crystals or polycrystalline aggregates with a coercive force up to 6300 Oe in the former case and 4200 Oe in the latter case.  相似文献   

14.
Glasses with compositions 41CaO(52 − x)SiO24P2O5·xFe2O33Na2O (2 ≤ x ≤ 10 mol.%) were prepared by melt quenching method. Bioactivity of the different glass compositions was studied in vitro by treating them with simulated body fluid (SBF). The glasses treated for various time periods in SBF were evaluated by examining apatite formation on their surface using grazing incidence X-ray diffraction, Fourier transform infrared reflection spectroscopy, scanning electron microscopy and energy dispersive spectroscopy techniques. Increase in bioactivity with increasing iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of immersion time in SBF and glass composition.  相似文献   

15.
Vitroceramic powders of Li2O-Al2O3-SiO2 systems (LAS), doped with 1% (LAS:1Ce) and 10% (LAS:10Ce) molar of cerianite (CeO2) were synthesized by means of the gelification technique of metal formates of aluminum and lithium, in the presence of tetraethoxy silane and CeO2. The gels obtained were dried (120 °C, 2.5 h), calcined (480 °C, 5 h) and sinterized (1250 °C, 30 min). The sinterized samples were characterized by X-ray difraction (XRD), scanning electron microscopy (SEM) and microchemical analysis (EDS). There is evidence for a mixture of two phases of 64% β-spodumene (Li2O-Al2O3-4SiO2) and 36% β-eucryptite (Li2O-Al2O3-2SiO2). The LAS:1Ce system was enriched in aluminum, the LAS:10Ce system showed areas of heterogeneous composition; some regions with a shortage of CeO2, while others zones with cerium cumulus. From the microscopy images it was found that CeO2 acts as a densificant agent in LAS system, favoring the sintering in the host. The chemical route and the sintering processes utilized allow the production of samples exhibiting an acceptable linear correlation between total thermoluminescent emission intensity and the irradiation dose when the CeO2 concentration is low (less than 1%), opening the possibility of using this kind of glass-ceramic in dosimetry.  相似文献   

16.
Fe doped ZnO powder samples (Fe/Zn=0.05 and 0.1) were prepared by sol-gel method with H2 deoxidation at 450 °C for several hours or just heated in air at the same temperature. It was showed by vibrating sample magnetometer (VSM) that samples heat treated in H2 could show strong ferromagnetism at room temperature while samples treated in air only show very weak magnetism. XRD using Co kα X-ray revealed that the samples heated in H2 were not pure phase but like a granular system and the magnetism mainly results from Fe3O4 in samples while samples heated in air showed pure ZnO phase. Our work indicated that H2 deoxidation treatment may be an effective technique to fabricate such magnetic semiconductor-like materials with Curie temperature higher than room temperature.  相似文献   

17.
A comparative study of the properties of two highly ordered lead based complex perovskites Pb(Y b1/2Ta1/2)O3 and Pb(Y b1/2Nb1/2)O3 has been carried out through x-ray diffraction, dielectric and Raman scattering measurements. These two compounds differ significantly in their structure, dielectric response and phonon vibration although the ionic radii and valencies are same for Ta and Nb. The room temperature x-ray diffraction pattern and Raman spectra show that the symmetry of lead ytterbium tantalate is lower than that of lead ytterbium niobate. The Raman spectra of Pb(Y b1/2Ta1/2)O3 also indicates the presence of local distortion in the lattice which may be one of the factors responsible for the existence of a secondary transition.  相似文献   

18.
The electrical characteristics of nylon-6 nanofibers incorporated with TiO2 and Fe3O4 nanoparticles were investigated. The resultant nanofibers exhibited good incorporation of nanoparticles. The impregnated TiO2 and Fe3O4 nanoparticles into the nylon-6 nanofibers were confirmed by high resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray (EDX) spectroscopy studies. The electrical conductivity of the nylon-6 incorporated with TiO2 and Fe3O4 composite nanofibers were higher than that of the pristine nylon-6 nanofibers. The impregnation of TiO2 and Fe3O4 nanoparticles significantly enhanced the electrical property of the composite nanofibers. These polymeric/nanoparticles composite nanofibers structure may open a new direction for future organic electronics.  相似文献   

19.
The pure SrNb2O6 powders were prepared at 1400 °C by a conventional solid-state method and characterized by X-ray powder diffraction and UV-vis diffuse reflection spectrum. The powders of Nb2O5 and SrNb2O6 were ball-milled together and annealed to form the Nb2O5/SrNb2O6 composite. Photocatalytic activities of the composites were investigated on the degradation of methyl orange. The results show that the proportion of Nb2O5 to SrNb2O6 and the annealing temperature greatly influence the photocatalytic activities of the composites. The best photocatalytic activity occurs when the weight proportion of Nb2O5 to SrNb2O6 is 30% and the annealing temperature is 600 °C. The tremendously enhanced photocatalytic activity of the Nb2O5/SrNb2O6 composite compared to Nb2O5 or SrNb2O6 is ascribed to the heterojunction effect taking place at the interface between particles of Nb2O5 and SrNb2O6. The powders also show a higher photocatalytic activity than commercial anatase TiO2.  相似文献   

20.
NiFe2O4/NiO nanocomposite thin films have been successfully prepared through a facile route using nickel iron layered double hydroxide (NiFe-LDH) as a single-source precursor. This synthetic approach mainly involves the formation of NiFe-LDH film by casting the slurry of NiFe-LDH precursor on the α-Al2O3 substrate, followed by high-temperature calcination. The composition, microstructure and properties of the films were characterized in detail by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and vibrating sample magnetometer (VSM). The results indicate that NiFe2O4/NiO composite film was composed of granules with diameter less than 100 nm, and the thickness of the film was in the range 1-2 μm. The magnetization of the film can be tuned by alternating the Ni/Fe molar ratio of LDH precursor. In addition, the method developed should be easily extended to fabricate other MFe2O4/MO composite film systems with specific applications just by an appropriate combination of divalent/trivalent composition in the precursor of LDHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号