首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystal EPR study has been carried at room temperature for VO(II) doped zinc sodium phosphate hexahydrate. Single crystal rotations in each of the three mutually orthogonal crystallographic planes namely bc, ac, and ab indicate three chemically inequivalent sites, with intensity ratios of 25:13:1. The spin Hamiltonian parameters obtained for the two intense sites are: Site I: gxx=1.983, gyy=1.985, gzz=1.933; Axx=7.39 mT, Ayy=7.15 mT, Azz=19.03 mT; Site. II: gxx=1.985, gyy=1.985, gzz=1.937; Axx=7.36 mT, Ayy=7.25 mT, Azz=18.67 mT. The two VO bond directions in the two sites are approximately at right angles to each other. The powder spectrum clearly indicates two chemically inequivalent sites, confirming the single crystal analysis. Admixture coefficients, Fermi contact, and dipolar interaction terms have also been evaluated.  相似文献   

2.
EPR spectroscopic investigations on single crystals of diaquabis[malonato(1-)-κ2O,O′] zinc(II) doped with VO(II) ion have been carried out at X-band frequencies and at 300 K. The single crystal, rotated along the three mutually orthogonally axes, has yielded spin-Hamiltonian parameters g and A as: gxx=1.980, gyy=1.972, gzz=1.937 and Axx=8.4, Ayy=6.1, Azz=18.1 mT, respectively. These spin-Hamiltonian parameters reflect a slight deviation from axial symmetry to rhombic, which is elucidated by the interstitial occupation of vanadyl ions. The isofrequency plots and powder EPR spectrum have been simulated. The percentage of metal-oxygen bond has been estimated. The optical absorption spectrum exhibits four bands at 257, 592, 720 and 764 nm suggesting a C4v symmetry. The admixture coefficients and bonding parameters have also been calculated by collaborating EPR data with optical data.  相似文献   

3.
In order to understand the structural behaviour of Cu(II) in a variety of ligand environments, single crystal electron paramagnetic resonance studies of Cu(II) doped in hexaaquazincdiaquabis(malonato)zincate [Zn(H2O)6][Zn(mal)2(H2O)2] are carried out at 300 K. Angular variation of copper hyperfine lines in three orthogonal planes shows the presence of single site, with spin Hamiltonian parameters as gxx=2.034, gyy=2.159, gzz=2.388, Axx=3.39 mT, Ayy=4.89 mT and Azz=13.72 mT. The g/A tensor direction cosines are compared with various Zn-O directions in the host lattice, which confirm that Cu(II) enters substitutionally in the lattice. The low value of Azz has been explained by considering admixture of d2x2y ground state with d2z excited state. EPR powder spectra at 300 and 77 K give identical spin Hamiltonian parameters (g=2.367, g=2.088, A=11.47 mT, A=2.63 mT). IR, UV-vis and powder XRD data confirm the structure and symmetry of the Cu(II) ion in the host lattice.  相似文献   

4.
Single-crystal electron paramagnetic resonance (EPR) study of Mn(II)-doped cobalt ammonium phosphate hexahydrate has been carried out at room temperature. The impurity shows more than 30 line pattern EPR spectra along the three crystallographic axes, suggesting the existence of more than one type of impurity ion in the host lattice. The spin Hamiltonian parameters, estimated from the three mutually orthogonal crystal rotations, are: site 1: g xx =1.989, g yy =1.994, g zz =1.999; A xx =?8.97, A yy =?9.52, A zz =?9.71 mT; D xx =?8.09 mT, D yy =?6.05 mT, D zz =14.14 mT; site 2: g xx =1.988, g yy =2.009, g zz =2.019; A xx =?9.11 mT, A yy =?9.58 mT, A zz =?9.93 mT; D xx =?6.61 mT, D yy =?6.11 mT, D zz =12.72 mT. The angular variation studies further reveal that the Mn(II) impurities enter the lattice substitutionally. The other Mn(II) sites which are at interstitial locations are difficult to follow due to their low intensity. The variation of zero-field splitting parameter with temperature indicates no phase transition. The observation of well-resolved Mn(II) spectrum at room temperature has been interpreted in terms of ‘host spin-lattice relaxation narrowing’ mechanism.  相似文献   

5.
Spectroscopic investigations on Mn(II)-doped triaquadipotassiumbis(malonato)zincate [K2(H2O)3] [Zn(mal)2], an inorganic polymer, have been carried out at room temperature using single crystal electron paramagnetic resonance (EPR), ultraviolet–visible, FT-IR and powder XRD techniques. Single crystal rotations along the three orthogonal axes show more than 30 lines of patterns in EPR spectra, indicating the presence of two sites, one with a large D value and the other with a smaller D value. The calculated spin-Hamiltonian parameters are as follows. Site 1: g xx =2.099, g yy =2.092, g zz =1.988, A xx =9.77, A yy =9.71, A zz =8.96 mT, D xx =?29.09, D yy =?11.90, D zz =40.99 mT; Site 2: g xx =2.040, g yy =1.995, g zz =1.924, A xx =9.51, A yy =9.09, A zz =8.80 mT, D xx =?11.94, D yy =?7.51 and D zz =19.45 mT. The direction cosines of g/A/D do not match with the direction cosines of Zn–O bonds in the host lattice for either site, suggesting that both the Mn(II) sites entered the lattice interstitially. Optical results indicate a strong covalent bonding between the metal ion and ligands, with site symmetry being primarily octahedral. The FT-IR and powder XRD data confirm the retention of the crystal structure, even after incorporating a paramagnetic probe. Various admixture coefficients, bonding and optical parameters have also been calculated.  相似文献   

6.
A new type of nitrogen-related center in natural diamond labeled NU1 is identified as a 〈100〉 split interstitial configuration by means of electron paramagnetic resonance (EPR) and photoluminescence (PL) techniques. In PL this center is seen as an electron-vibration system with a zero-phonon line at 485 nm in the crystals containing S1/OK1 and 440.3 nm/N3 centers. NU1 EPR spectra are described by a spin-Hamiltonian with parameters: S = ½, I = 1 and A xx (N) = 22.5 G, A yy (N) = 19.5 G, A zz (N) = 20.55 G, g xx  = 2.0043, g yy  = 2.0032, g zz  = 2.0020. Directions of A zz and g zz coincide and correspond to [001]. The directions of A xx and A yy coincide with those of g xx and g yy and correspond to [110] and [?110], respectively. Analysis of the phonon structure of the NU1 center suggested that titanium can be the second atom together with nitrogen in the structure of a split interstitial.  相似文献   

7.
Electron spin resonance spectra of Cu2+ doped in single crystals of strontium tartrate trihydrate grown by a diffusion technique have been investigated at 77K. Copper enters the lattice substitutionally and is trapped at two magnetically inequivalent sites. ESR measurements gave the following values for the spin-Hamiltonian parameters. Cu2+(I): ggg = 2.0380, gyy = 2.1317, gzz = 2.3918 and Axx = 26.3 G, Ayy = 56.3 G, Azz = 110.8 G. Cu2+(II): gxx = 2.0497, gyy = 2.1297, gzz = 2.3706 and Axx = 19.2 G, Ayy = 61.4 G, Azz = 107.2 G.  相似文献   

8.
Single-crystal electron paramagnetic resonance (EPR) studies of VO(II) doped in hexaaquazinc(diaquabismalonto)zincate have been performed at room temperature. Single-crystal rotations along the three orthogonal axes show the presence of a single site in an interstitial position and the location has been identified from crystal data of the host lattice. The spin-Hamiltonian parameters calculated from EPR spectra are g xx  = 1.973, g yy  = 1.972, g zz  = 1.930, A xx  = 7.05 mT, A yy  = 6.85 mT, A zz  = 18.93 mT. Molecular orbital coefficients β 2 = 0.71 and ε 2 = 0.62 have been calculated and reveal a moderately covalent metal–ligand bond. Optical and EPR data have been used to obtain crystal field parameters, admixture and molecular orbital coefficients.  相似文献   

9.
Single-crystal electron paramagnetic resonance (EPR) studies of VO(II) doped in hexaaquazinc(diaquabismalonto)zincate have indicated interstitial location for vanadyl, which was a rare observation, considering the structure of the host lattice (K. Arun Prasath Lingam, S. Mithira and P. Sambasiva Rao, Appl. Magn. Reson. 38:295, 2010). However, substitutional location is noticed in a different crystal, in which interstitial resonances are almost absent. Generally, both types of resonances will be noticed in the same crystal. The spin Hamiltonian parameters calculated from the EPR spectra for substitutional location are: g xx  = 1.981, g yy  = 1.976, g zz  = 1.941, A xx  = 7.96 mT, A yy  = 6.09 mT, and A zz  = 17.83 mT. Crystal-field parameters, admixture and molecular orbital coefficients have been calculated from optical data, which reveal a moderately covalent metal–ligand bonding.  相似文献   

10.
Vanadyl ion substitutes for the central ion, if the doped complex has at least four water molecules. However, the present EPR, XRD, FT-IR and optical absorption studies on vanadyl-doped triaqua(1,10-phenanthroline-k2N,N′)(sulfato-kO)magnesium(II) suggest a substitutional defective nature, which is a rare observation. Single crystal EPR studies in three mutually orthogonal planes indicate two chemically non-equivalent sites with different intensities. However, the lower intensity site could not be analysed due to its weaker intensity and overlap with other sites during crystal rotations. The spin Hamiltonian parameters obtained for the major site are as follows: g xx =1.973, g yy =1.972, g zz =1.930; A xx =7.15, A yy =6.77, A zz =18.92 mT. The direction cosines of principal g and A values suggest that the impurity has entered the lattice substitutionally, which is a very uncommon phenomenon. Admixture coefficients, Fermi contact, dipolar interaction and covalency of metal–ligand bonds have also been evaluated. Optical, FT-IR and powder XRD techniques confirm the structure of the complex.  相似文献   

11.
Anandalakshmi  H  Velavan  K  Sougandi  I  Venkatesan  R  Rao  P Sambasiva 《Pramana》2004,62(1):77-86
Single crystal EPR studies of Mn(II)-doped zinc ammonium phosphate hexahydrate (ZnNH4PC4·6H2O) have been reinvestigated at room temperature. Single crystal rotations along the three orthogonal axes indicate that the spin Hamiltonian parameters for the interstitial site are:g xx = 1.966,g yy = 1.972,g zz = 1.976;D xx = -12.28 mT,D yy = -2.09 mT andD zz = 14.37 mT;A xx = 9.06 mT,A yy = 9.06 mT andA zz = 11.09 mT;a = -0.11 mT. These parameters differ considerably from the previous report of Chand and Agarwal and indicate the orthorhombic nature of the paramagnetic impurity. The impurity is found to enter the lattice interstitially, in contrast to earlier prediction of substitutional position. The percentage covalency of the Mn-0 bond has been estimated.  相似文献   

12.
Electron paramagnetic resonance spectra of Cu2+ doped in single crystal of anhydrous sodium oxalate grown by slow evaporation from saturated aqueous solutions have been investigated. EPR measurements gave the following values for the spin Hamiltonian parameters: gxx = gyy = 2.0741, gzz = 2.3253, Axx = Ayy = ?14.9G and Azz = ?147.7 G. The principal axes of the hyperfine coupling and g tensors are spatially coincident. Using the optical absorption energy values given for a similar complex we have estimated the values of the bonding parameters and orbital-reduction factors for the system under investigation.  相似文献   

13.
In natural hypersthene a paramagnetic center in triclinic site symmetry was detected by electron paramagnetic resonance with the following spin. Hamiltonian parameters:g xx=2.0104,g yy=2.0256,g zz=2.0090. This center is most likely formed as a hole on an oxygen of the SiO4 unit. No hyperfine splitting was detected at room temperature. The EPR signal disappears after heating the crystal at 773 K for 1 h although the colour does not bleach.  相似文献   

14.
Electron paramagnetic resonance (EPR), optical, Fourier-transform infrared (FTIR) and powder X-ray diffraction (XRD) studies have been carried out on Cu(II)-doped triaqua(1,10-phenanthroline-k2 N,N′)(sulfato-kO)zinc(II) to get information about the position and spin Hamiltonian parameters of the dopant. Angular variation of copper hyperfine structure lines in EPR study shows the presence of a single site with g and A values as: g xx  = 2.003, g yy  = 2.001, g zz  = 2.223; A xx  = 4.41 mT, A yy  = 2.39 mT and A zz  = 12.16 mT. The slightly lower parallel value obtained for the copper nucleus has been explained by considering admixture of the ground state with the excited state. The direction cosines of principle g and A values suggest that the impurity is present interstitially. Admixture coefficients and additional parameters (P, k, α 2, α′) have also been evaluated. Optical, FTIR and powder XRD techniques have been used to reconfirm the structure of the host lattice.  相似文献   

15.
The nature of paramagnetic centres trapped in X-irradiated Na2SO4 single crystals containing chlorine as impurity has been determined from E.S.R. measurements both at room and liquid nitrogen temperatures. ClO3, ClO2, SO4 - and O3 - are the paramagnetic centres identified. The g and A parameters of ClO3 change considerably between 298 K and 77 K. Thus the parameters of ClO3 obtained at 298 K are gxx = 2·0123, gyy = 2·0143, gzz = 2·0206 G and those of the A-tensor are Axx = 97, Ayy = 100 and Azz = 112 G. The parameters obtained for the same centre at 77 K are gxx = 2·0132, gyy = 2·0173, gzz = 2·0073 G and those of the A-tensor are Axx = 130·6, Ayy = 146·3 and Azz = 181·2 G. The temperature variation of the principal values are determined in the temperature range between 298 K and 77 K. These data can be interpreted on the assumption that ClO3 undergoes libration at room temperature, which is frozen out reversibly on cooling. The structure and mechanism of these defects are discussed further.  相似文献   

16.
Electron paramagnetic resonance of Cu2+-doped catena-trans-bis(N-(2-hydroxyethyl)-ethylenediamine) zinc(II)-tetra-μ-cyanonicelate(II) [Zn(NH2(CH2)3NHOH)2Ni(CN)4] single crystals and powder are examined at room temperature. The spectra show the substitution of the Zn2+ ion with the Cu2+ ion. The crystal field around the Cu2+ ion is nearly axial. There is a single paramagnetic site withg xx=2.073,g yy=2.060,g zz=2.248,A xx=40.5 G,A yy=50.8 G,A zz=172.0 G. The ground-state wave function is an admixture of d x 2y 2 and d z 2 states. The optical-absorption studies show two bands at 320 nm (31250 cm−1) and 614 nm (16286 cm−1) which confirm the axial symmetry. The crystal field parameters and the wave function are determined.  相似文献   

17.
Single crystal Electron Paramagnetic Resonance studies on Mn(II) doped zinc sodium sulphate hexahydrate are carried out at room temperature. The angular variation spectra of the crystal in the three orthogonal planes show that the paramagnetic impurity Mn(II) has entered the host lattice interstitially. The spin Hamiltonian parameters calculated are: gxx=1.899, gyy=1.944, gzz=2.024; and The probable location for the interstitial site has been identified from the position of various atoms in the lattice. The variable temperature study for polycrystalline sample has been carried out, which indicates no phase transition. The percentage covalency of Mn-O bond has been estimated to be 8.5%.  相似文献   

18.
Lithium trifluoromethane-sulfonate (Li-TFMS:CF3SO3Li) irradiated by γ-rays showed an electron spin resonance (ESR) powder spectrum having the rhombicg-factor ofg xx = 2.0259 ± 0.0005,g yy = 2.0112 ± 0.0005 andg zz = 2.0025 ± 0.0005 and a triplet hyperfine coupling constant ofA xx/gβ= 0.8 ± 0.15 mT.A yy andA zz are not obtained because of the broadened spectrum. The energy levels,g-factor,A xx/gβ and optical absorption spectrum of several conceivable radicals such as CF2SO3Li, CF3-S-O and CF3-S-O-O have been calculated by softwares MOPAC-V2 and Gaussian-98 based on ROHF (Restricted Hatree-Fock for open shell molecule). The most probable radical was ascribed to CF3-SO from both calculated and experimental results. The response to γ-ray dose and the thermal stability have been studied in addition to the effect of UV illumination for possible use of the signal intensity in ESR dosimetry. The obtained number of free radicals per 100 eV (G-value) was 1.23 ± 0.40.  相似文献   

19.
Electron paramagnetic resonance (EPR) study of Cu2+ ions doped in diammonium hexaaqua magnesium sulphate single crystal over the temperature range of 4.2–320 K is reported. Copper enters the lattice substitutionally and is trapped at two magnetically equivalent sites. The spin Hamiltonian parameters are evaluated at 320, 300, 77, and 4.2 K. The angular variations of the resonance lines in three mutually perpendicular planes ab, bc* and c*a are used to determine principal g and A values. The observed spectra are fitted to a spin Hamiltonian of rhombic symmetry with parameters of Cu2+ at 77 and 4.2 K: g xx  = 2.089, g yy  = 2.112, g zz  = 2.437 (±0.002) and A xx  = 38, A yy  = 14, A zz  = 110 (±2) × 10?4 cm?1. The ground state wave function of Cu2+ ion in this lattice is determined. The g-factor anisotropy is calculated and compared with the experimental value. The optical absorption spectra of the crystal are also recorded at room temperature. With the help of assigned bands the crystal-field parameters (Dq, Ds and Dt) are evaluated. By correlating the optical and EPR data, the nature of bonding in the complex is discussed. The temperature dependence of the g values is explained to conclude the occurrence of both static and dynamic Jahn–Teller effects over the temperature range of investigation.  相似文献   

20.
Single crystal EPR study of Mn(II) doped in cobalt potassium phosphate hexahydrate has been carried out at room temperature. The impurity shows a 30 line pattern EPR spectra along a particular crystallographic axis suggesting the existence of only one type of impurity in place of Co(II) ion in the host lattice. The spin Hamiltonian parameters have been estimated as: g11=2.011, g22=1.998, g33=1.991, and A11=−8.9, A22=−8.8, A33=−8.4 mT and D11=−15.2, D22=−9.4, D33=24.6 mT, respectively. The sign of A is designated as negative and D as positive. The covalency of metal-oxygen bond has been estimated. The relaxation times, calculated as a function of temperature, indicate spin-lattice relaxation narrowing at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号