首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Rotational spectra of three isotopomers of the Xe-(H2O)2 van der Waals trimer were recorded using a pulsed-nozzle, Fourier transform microwave spectrometer. Nine [nine, four] a-type and twelve [eleven, seven] b-type transitions were measured for the 132Xe-(H2O)2 [129Xe-(H2O)2, 131Xe-(H2O)2] isotopomer. The determined rotational and centrifugal distortion constants were used to extract information about the structure and vibrational motions of the complex. The nuclear quadrupole hyperfine structures due to the 131Xe (nuclear spin quantum number I=3/2) nucleus were also detected. The large value of the off-diagonal nuclear quadrupole coupling constant chiab in particular provides detailed insight into the electronic environment of the xenon atom and the orientations of the water molecules within the complex. An effective structure that best reproduces the experimental 131Xe nuclear quadrupole coupling constants is rationalized by ab initio calculations. An overall goal of this line of work is to determine how the successive solvation of a xenon atom with water molecules affects the xenon electron distribution and its intermolecular interactions. The results may provide molecular level interpretations of 129Xe NMR data from, for example, imaging experiments.  相似文献   

2.
The rotational spectrum of the cyclic (HCl)(2)H(2)O cluster has been identified for the first time in the chirped pulse, Fourier transform microwave spectrum of a supersonically expanded HCl/H(2)O/Ar mixture. The spectrum was measured at frequencies 6-18.5 GHz, and transitions in two inversion-tunneling states, at close to 1?:?3 relative intensity, have been assigned for the parent species. The two single (37)Cl isotopic species, and the double (37)Cl species have been assigned in the natural abundance sample, and the (18)O and HDO species of the cluster were identified in isotopically enriched samples. The rich nuclear quadrupole hyperfine structure due to the presence of two chlorine nuclei has been satisfactorily fitted and provided useful information on the nonlinearity of intermolecular bonds in the cluster. The r(s) heavy atom geometry of the cluster was determined and the strongest bond in the intermolecular cycle r(O···HCl) = 3.126(3) ?, is found to be intermediate in length between the values in H(2)O···HCl and (H(2)O)(2)HCl. The fitted spectroscopic constants and derived molecular properties are compared with ab initio predictions, and a discussion of complexation effects in these three clusters is made.  相似文献   

3.
The ground-state rotational spectra of the six isotopomers (16)O(2) (14)N(35)Cl, (16)O(2) (14)N(37)Cl, (18)O(16)O(14)N(35)Cl, (18)O(2) (14)N(35)Cl, (16)O(2) (15)N(35)Cl, and (16)O(2) (15)N(37)Cl of nitryl chloride were observed with a pulsed-jet, Fourier-transform microwave spectrometer to give rotational constants, Cl and (14)N nuclear quadrupole coupling, and spin-rotation coupling constants. These spectroscopic constants were interpreted to give r(0), r(s), and r(m) ((2)) versions of the molecular geometry and information about the electronic redistribution at N when nitryl chloride is formed from NO(2) and a Cl atom. The r(m) ((2)) geometry has r(N-Cl)=1.8405(6) A, r(N-O)=1.1929(2) A, and the angle ONO=131.42(4) degrees , while the corresponding quantities for the r(s) geometry are 1.8489 A, 1.1940 A, and 131.73 degrees , respectively. Electronic structure calculations at CCSD(T)cc-pVXZ (X=T, Q, or 5) levels of theory were carried out to give a r(e) geometry, vibration-rotation corrections to equilibrium rotational constants, and values of the (35)Cl and (14)N nuclear hyperfine (quadrupole and spin-rotation) coupling constants in good agreement with experiment. The equilibrium geometry at the CCSD(T)/cc-pV5Z level of theory has r(N-Cl)=1.8441 A, r(N-O)=1.1925 A and the angle ONO=131.80 degrees . The observed rotational constants were corrected for the vibration-rotation effects calculated ab initio to yield semiempirical equilibrium constants which were then fitted to give the following semiempirical equilibrium geometry: r(N-Cl)=1.8467(2) A, r(N-O)=1.1916(1) A, and the angle ONO=131.78(3) degrees .  相似文献   

4.
5.
Pure rotational spectra of the sodium chloride-water complexes, NaCl-(H(2)O)(n) (n = 1, 2, and 3), in the vibronic ground state have been observed by a Fourier- transform microwave spectrometer coupled with a laser ablation source. The (37)Cl-isotopic species and a few deuterated species have also been observed. From the analyses of the spectra, the rotational constants, the centrifugal distortion constants, and the nuclear quadrupole coupling constants of the Na and Cl nuclei were determined precisely for all the species. The molecular structures of NaCl-(H(2)O)(n) were determined using the rotational constants and the molecular symmetry. The charge distributions around Na and Cl nuclei in NaCl are dramatically changed by the complex formation with H(2)O. Prominent dependences of the bond lengths r(Na-Cl) on the number of H(2)O were also observed. By a comparison with results of theoretical studies, it is shown that the structure of NaCl-(H(2)O)(3) is approaching to that of the contact ion-pair, which is considered to be an intermediate species in the incipient solvation process.  相似文献   

6.
Three conformers of the neutral amino acid N,N-dimethylglycine [(CH3)2NCH2COOH] were detected in a supersonic expansion by a combination of laser ablation (LA) and molecular-beam Fourier transform microwave (MB-FTMW) spectroscopy. A bifurcated methyl-to-carbonyl (C--HO==C) weak intramolecular hydrogen bond might stabilise the most stable conformer of C(s) symmetry. The second most stable conformer of C1 symmetry has a hydrogen bond between the hydroxyl group and the lone pair at the nitrogen atom (NH--O). The r(s) and r0 structures were derived for this conformer from the rotational data for the parent and six minor 13C, 15N and OD isotopomers. A third conformer exhibits a cis-carboxyl functional group and C1 symmetry. Ab initio MP2/6-311++G(d,p) predictions of the spectroscopic parameters were useful in analysing the spectra. In particular, the agreement of the nuclear quadrupole coupling constants with those calculated was conclusive in identifying the different conformers.  相似文献   

7.
The ground-state rotational spectra of 24 isotopomers of ethynylstannane have been observed by pulsed-jet, Fourier-transform microwave spectroscopy. The spectroscopic constants, B(0,)D(J) and D(JK) are reported for symmetric-top isotopomers H(3)(n)Sn(12)C(12)CH, where n = 116, 117, 118, 119, 120, 122 and 124, D(3)(n)Sn(12)C(12)CH, where n = 116, 118, 120, 122 and 124, H(3)(n)Sn(13)C(12) CH and H(3)(n)Sn(12)C(13)CH , where n = 116,118 and 120, and H(3)(n)Sn(12)C(12)CD, where n = 116, 118 and 120. In addition, the values of A(0), B(0), C(0), Delta(J) and Delta(JK) were obtained for the three asymmetric-top isotopomers DH(2)(n)Sn(12)C(12)CH, where n = 116, 118 and 120. Hyperfine structure was resolved and assigned in the transitions of the isotopomers H(3)(n)SnCCD, where n = 116, 118 and 120, and in the isotopomers H(3)(117)SnCCH and H(3)(119)SnCCH. In the former group, the hyperfine structure arises from D nuclear quadrupole coupling while in the latter group its origin lies in the spin-rotation coupling of the I = 1/2 Sn nuclear spin to the rotational motion. For these isotopomers, D nuclear quadrupole and spin-rotation coupling constants are determined where appropriate. The rotational constants obtained for the 24 isotopomers of H(3)SnCCH were used to obtain the following types of molecular geometry for ethynylstannane: r(0), r(s), and r(m).  相似文献   

8.
The Fourier transform microwave spectra of the various isotopologs of the weakly bound complex of carbon dioxide with the most abundant molecule in the atmosphere, nitrogen, have been measured. The structure of the complex has been determined and evidence for the inversion of the N(2) is presented. The molecule is T-shaped, with the OCO forming the cross of the T, a structure consistent with that deduced from a previous rotationally resolved infrared experiment. A significant wide-amplitude bending motion of the N(2) is deduced from the values of the (nearly identical) nuclear quadrupole coupling constants of the nitrogen nuclei. The spectroscopic results are compared with high-quality ab initio calculations. We examine the consequences of the N(2) CO(2) complex formation in the atmosphere upon the greenhouse warming potential of carbon dioxide.  相似文献   

9.
For the first time the millimeter-wave spectra of the trans-35ClHC=CHF and trans-37ClHC=CHF isotopomers have been observed in natural abundance. Many DeltaJ=0, +/-1 DeltaK(-1)=+1 transitions for 35ClHC=CHF and DeltaJ=0 DeltaK(-1)=+1 transitions for 37ClHC=CHF have been detected and assigned. This allowed us to accurately determine the vibrational ground-state rotational constants, quartic and some sextic centrifugal distortion constants, and nuclear quadrupole coupling constants for both 35Cl and 37Cl. The experimental investigation has been supported by highly accurate theoretical predictions. As far as ab initio computations are concerned, the complete set of cubic and quartic force constants have been evaluated by numerical differentiation of the analytic second-order M?ller-Plesset many-body perturbation theory/correlation consistent polarized valence triple zeta second derivatives. The anharmonic part of the force field completes the theoretical study on the equilibrium structure, dipole moment, chlorine quadrupolar tensor, and harmonic force field previously carried out by the same authors.  相似文献   

10.
Guided by ab initio calculations, Fourier transform microwave spectra in the 6-21 GHz region are obtained for seven isotopomers of the complex formed between 1-chloro-1-fluoroethylene and acetylene. These include the four possible combinations of (35)Cl- and (37)Cl-containing CH(2)CClF with the most abundant acetylene isotopic modification, HCCH, and its H(13)C(13)CH analogue, as well as three singly substituted deuterated isotopomers. Analysis of the spectra determines the rotational constants and additionally, the complete chlorine quadrupole hyperfine coupling tensors in both the inertial and principal electric field gradient axis systems, and where appropriate, the diagonal components of the deuterium quadrupole coupling tensors. The inertial information contained in the rotational constants provides the structure for CH(2)CClF-HCCH: a primary, hydrogen bonding interaction existing between the HCCH donor and the F atom acceptor on the 1-chloro-1-fluoroethylene moiety, while a secondary interaction occurs between the acetylenic bond on the HCCH molecule and the H atom cis to the hydrogen-bonded F atom on the substituted ethylene, which causes the hydrogen bond to deviate from linearity. This is similar to the structure obtained for 1,1-difluoroethylene-HCCH [H. O. Leung and M. D. Marshall, J. Chem. Phys. 126, 154301 (2006)], and indeed, to within experimental uncertainty, the intermolecular interactions in CH(2)CClF-HCCH and its 1,1-difluoroethylene counterpart are practically indistinguishable, even though ab initio calculations at the MP2∕6-311G++(2d, 2p) level suggest that the former complex is more strongly bound.  相似文献   

11.
High-resolution rotational spectra of the helium-pyridine dimer were obtained using a pulsed molecular beam Fourier transform microwave spectrometer. Thirty-nine R-branch (14)N nuclear quadrupole hyperfine components of a- and c-type dipole transitions were observed and assigned. The following spectroscopic parameters were obtained: rotational constants A=3875.2093(48) MHz, B=3753.2514(45) MHz, and C=2978.4366(81) MHz; quartic centrifugal distortion constants D(J)=0.124 08(55) MHz, D(JK)=0.1200(43) MHz, D(K)=-0.2451(25) MHz, d(1)=0.004 27(27) MHz, and d(2)=0.000 16(10) MHz; sextic centrifugal distortion constants H(J)=0.003 053(35) MHz, H(JK)=-0.006 598(47) MHz, and H(K)=0.004 11(59) MHz; (14)N nuclear quadrupole coupling constants chi(aa)((14)N)=-4.7886(76) MHz, chi(bb)((14)N)=1.4471(76) MHz, and chi(cc)((14)N)=3.3415(43) MHz. Our analyses of the rotational and (14)N quadrupole coupling constants show that the He atom binds perpendicularly to the aromatic plane of C(5)H(5)N with a displacement angle of approximately 7.0 degrees away from the c axis of the pyridine monomer, toward the nitrogen atom. Results from an ab initio structure optimization on the second order Moller-Plesset level are consistent with this geometry and gave an equilibrium well depth of 86.7 cm(-1).  相似文献   

12.
Pure rotational transitions of the weakly bound complex He-N(2)O and three minor isotopomers (He-(14)N(15)NO, He-(15)N(14)NO, and He-(15)N(15)NO) were measured in the frequency region from 6 to 20 GHz. Predictions for the microwave transition frequencies were based on the infrared work by Tang and McKellar [J. Chem. Phys. 117, 2586 (2002)]. In the case of (14)N containing isotopomers, nuclear quadrupole hyperfine structure of the rotational transitions was observed and analyzed. The resulting spectroscopic parameters were used to determine geometrical and dynamical information about the complex. An ab initio potential energy surface was calculated at the coupled cluster level of theory with single and double excitations and perturbative inclusion of triple excitations. This surface was constructed using the augmented correlation consistent polarized valence triple zeta basis set for all atoms with the inclusion of bond functions for the van der Waals bond. Bound state calculations were done to determine the energies of low-lying rovibrational levels that are supported by the potential energy surface. The resulting transition energies agree with the experimental values to 1% or better.  相似文献   

13.
Microwave rotational spectra of eleven isotopomers of the Ne(3)-NH(3) van der Waals tetramer were measured using a pulsed jet, Balle-Flygare type Fourier transform microwave spectrometer. The transitions measured fall between 4 and 17 GHz and correspond to the ground internal rotor state of the weakly bound complex. The (20)Ne(3)- and (22)Ne(3)-containing species are symmetric top molecules while the mixed (20)Ne(2)(22)Ne- and (20)Ne(22)Ne(2)-isotopomers are asymmetric tops. For each of the deuterium-containing isotopomers, a tunneling splitting was observed due to the inversion of NH(3) within the tetramer. The (14)N nuclear quadrupole hyperfine structures were resolved and included in the spectroscopic fits of the various isotopomers. The rotational constants obtained from the fits were used to estimate the van der Waals bond lengths of the tetramer while the (14)N nuclear quadrupole coupling contants and the observed inversion tunneling splittings provided information about the internal dynamics of the NH(3) moiety. The experimental results were complemented by the construction of three ab initio potential energy surfaces [CCSD(T)] for the Ne(3)-NH(3) complex, each corresponding to a different internal geometry of NH(3) ( 90 degree angle HNH = 106.67 degrees, 90 degree angle HNH = 113.34 degrees, and 90 degree angle HNH = 120.00 degrees ). The topologies of the surfaces are related to the structures and dynamics of the tetramer. Extensive comparisons are made between the results obtained for the Ne(3)-NH(3) tetramer in this work and previous experimental and ab initio studies of related Rg(n)-NH(3) van der Waals clusters.  相似文献   

14.
The microwave rotational spectra of the two most abundant isotopic species of propiolyl chloride have yielded rotational constants and nuclear quadrupole coupling constants. These, in combination with the chloride nuclear quadrupole resonance spectra, have yielded the molecular structure.  相似文献   

15.
Nicotine has been investigated in the gas phase and two conformational forms were characterized through their rotational spectra. Two spectroscopic techniques have been used to obtain the spectra: a new design of broadband Fourier transform microwave (FTMW) spectroscopy with an in-phase/quadrature-phase-modulation passage-acquired-coherence technique (IMPACT) and narrowband FTMW spectroscopy with coaxially oriented beam-resonator arrangement (COBRA). The rotational, centrifugal distortion and hyperfine quadrupole coupling constants of two conformers of nicotine have been determined and found to be in N-methyl trans configurations with the pyridine and pyrrolidine rings perpendicular to one another. The quadrupole hyperfine structure originated by two (14)N nuclei has been completely resolved for both conformers and used for their unambiguous identification.  相似文献   

16.
Spectra of the open shell complexes O(2)-HF and O(2)-DF were recorded using Fourier transform microwave spectroscopy. A complete analysis of the hyperfine structure and a global fit including microwave and infrared frequencies [W. M. Fawzy, C. M. Lovejoy, D. J. Nesbitt, and J. T. Hougen, J. Chem. Phys. 117, 693 (2002)] are reported. The Fermi contact interaction between the electron and nuclear spins, the electron spin-nuclear spin dipolar interaction, the nuclear spin-nuclear spin dipolar interaction, and the nuclear electric quadrupole interaction (for O(2)-DF) were considered in the analysis. The correspondence between the magnetic hyperfine constants and the two nuclei of the H(D)F is unambiguously established. In both O(2)-HF and O(2)-DF, the Fermi contact parameter is larger for the fluorine than for the hydrogen, while for the nuclear spin-electron spin dipolar hyperfine constants, the reverse is true. The effective angle between the HF bond and the a axis of the complex, determined from the nuclear spin-nuclear spin interaction constant, is 38(4) degrees. The same angle for the DF complex, derived from the deuterium nuclear quadrupole coupling constant, is 31(4) degrees.  相似文献   

17.
We demonstrate a general nuclear magnetic resonance (NMR) spectroscopic approach in obtaining high-resolution (17)O (spin-5/2) NMR spectra for biological macromolecules in aqueous solution. This approach, termed quadrupole central transition (QCT) NMR, is based on the multiexponential relaxation properties of half-integer quadrupolar nuclei in molecules undergoing slow isotropic tumbling motion. Under such a circumstance, Redfield's relaxation theory predicts that the central transition, m(I) = +1/2 ? -1/2, can exhibit relatively long transverse relaxation time constants, thus giving rise to relatively narrow spectral lines. Using three robust protein-ligand complexes of size ranging from 65 to 240 kDa, we have obtained (17)O QCT NMR spectra with unprecedented resolution, allowing the chemical environment around the targeted oxygen atoms to be directly probed for the first time. The new QCT approach increases the size limit of molecular systems previously attainable by solution (17)O NMR by nearly 3 orders of magnitude (1000-fold). We have also shown that, when both quadrupole and shielding anisotropy interactions are operative, (17)O QCT NMR spectra display an analogous transverse relaxation optimized spectroscopy type behavior in that the condition for optimal resolution depends on the applied magnetic field. We conclude that, with the currently available moderate and ultrahigh magnetic fields (14 T and higher), this (17)O QCT NMR approach is applicable to a wide variety of biological macromolecules. The new (17)O NMR parameters so obtained for biological molecules are complementary to those obtained from (1)H, (13)C, and (15)N NMR studies.  相似文献   

18.
The rotational spectrum of neutral phenylalanine has been recorded for the first time using laser-ablation molecular-beam Fourier transform microwave spectroscopy (LA-MB-FTMW). Two conformers stabilized by conjugative O-H···N and N-H···π hydrogen bond interactions have been conclusively identified on the basis of experimental values of rotational and (14)N nuclear quadrupole coupling constants. The nonobservation of the rotational spectra of the other low-energy conformers has been attributed to the photofragmentation that takes place in the laser ablation process. Nuclear quadrupole coupling interactions have been used directly to determine the orientation of the amino group and to identify and experimentally characterize the N-H···π interactions.  相似文献   

19.
The microwave spectrum for N-hydroxypyridine-2(1H)-thione (pyrithione) was measured in the frequency range 6-18 GHz, providing accurate rotational constants and nitrogen quadrupole coupling strengths for three isotopologues, C(5)H(4)(32)S(14)NOH, C(5)H(4)(32)S(14)NOD, and C(5)H(4)(34)S(14)NOH. Pyrithione was found to be in a higher concentration in the gas phase than the other tautomer, 2-mercaptopyridine-N-oxide (MPO). Microwave spectroscopy is best suited to determine which structure predominates in the gas phase. The measured rotational constants were used to accurately determine the coordinates of the substituted atoms and provided sufficient data to determine some of the important structural parameters for pyrithione, the only tautomer observed in the present work. The spectra were obtained using a pulsed-beam Fourier transform microwave spectrometer, with sufficient resolution to allow accurate measurements of the (14)N nuclear quadrupole hyperfine interactions. Ab initio calculations provided structural parameters and quadrupole coupling strengths that are in very good agreement with measured values. The experimental rotational constants for the parent compound are A = 3212.10(1), B = 1609.328(7), and C = 1072.208(6) MHz, yielding the inertial defect Δ(0) = -0.023 amu·?(2) for the C(5)H(4)(32)S(14)NOH isotopologue. The observed near zero inertial defect clearly indicates a planar structure. The least-squares fit structural analysis yielded the experimental bond lengths R(O-H) = 0.93(2) ?, R(C-S) = 1.66(2) ?, and angle (N-O-H) = 105(4)° for the ground state structure.  相似文献   

20.
Rotational spectra of eight isotopomers of the weakly bound van der Waals complex CO-CH4 were recorded in the frequency range from 4 to 19 GHz using a pulsed molecular beam Fourier transform microwave spectrometer. For the isotopomers containing methane monomers of Td symmetry, namely, 12C16O-12CH4, 12C16O-13CH4, 12C16O-12CD4, 13C16O-12CH4, and 13C18O-12CH4, three rotational progressions were observed that correlate to the jm=0, 1, and 2 rotational levels of free methane. For those containing partially deuterated methane monomers with C3V symmetry, namely, 12C16O-12CH3D and 12C16O-12CHD3, only two progressions were recorded, correlating to the jk=0(0) and 1(1) rotational levels of free CH3D and CHD3, respectively. The van der Waals bond distance R, intermolecular stretching frequency nus, and the corresponding stretching force constant ks were derived from the obtained spectroscopic results. The results obtained for the jm=0 ground state are compared to the previous infrared and millimeter wave data. A 17O nuclear quadrupole coupling constant was determined from the resolved hyperfine structure of 13C17O-12CH4 and was used to obtain angular information about the carbon monoxide subunit. A Coriolis interaction was deduced from the irregular spectral pattern involving levels with jm=1. Qualitative information about the extent of the perturbation was obtained from a comparison of spectroscopic constants of different isotopomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号