首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
内窥镜的红外激光传输用柔性空芯光纤的研制   总被引:1,自引:3,他引:1  
朱晓松  周志云  石艺尉 《光学学报》2007,27(12):2123-2127
通过理论计算确立了多功能介质-金属结构空芯光纤的结构参量,优化了液相镀膜法的有关条件,明确了具体制作参量。制作了以聚碳酸酯毛细管为基管的,高柔韧性的,可同时低损耗传输红外目标波长激光和可见导航光红外的空芯光纤。对光纤传输性能进行了测试。在2.94μm波长的Er∶YAG和0.63μm波长的红色半导体激光器的直线损耗分别为0.4 dB/m和3 dB/m。组装在医疗内窥镜中的柔性空芯光纤,在先端以0.9 cm半径135°角弯曲时,对Er∶YAG激光仍有近70%的传输效率;绿色导航光在内窥镜中的的损耗值为11 dB,绿色指示点在内窥镜的视窗中清晰可见。结果表明此种光纤在内窥镜的激光传输方面有重要的应用价值。  相似文献   

2.
A sealing cap had been proposed as an output device for hollow optical fibers in delivering laser light underwater. Properties of sealing cap were experimentally discussed when used in ablation on soft tissue for Er:YAG laser. A self-cleaning effect of the sealing cap was observed when various targets were used for different laser light power. Debris from pork fat formed a uniform oil layer on the output surface of the cap, and the oil layer is relatively transparent in Er:YAG laser light wavelength band. When the target was pork muscle, almost no debris could attach on the surface of the cap. The self-cleaning effect was more obvious when ablation was conducted underwater because of the protection of the water film between the target and the cap's surface.  相似文献   

3.
Shi YW  Ito K  Matsuura Y  Miyagi M 《Optics letters》2005,30(21):2867-2869
We report on low-loss multiwavelength laser delivery of hollow optical fiber in a wide wavelength region, from the visible to the infrared. Improved methods of liquid-phase coating were used to fabricate the hollow fiber with inner films of a silver and a cyclic olefin polymer (COP) layer. The surface roughness of the silver layer was reduced dramatically by pretreatment on the inner glass surface with an SnCl2 solution. The COP layer roughness was also decreased by using an ambient atmosphere of tetrahydrofuran (THF) solvent during the COP layer formation. Owing to the smooth surfaces, hollow fiber with optimum COP film thickness for CO2 laser light simultaneously yields low losses for a Er:YAG laser and a red pilot beam. The power durability of CO2 and Er:YAG lasers, as well as the loss properties for the pilot beam, is demonstrated.  相似文献   

4.
A new method is proposed for fabricating polymer-coated silver hollow glass fibers to avoid the flexibility deterioration after the curing process. Transmission properties of fibers made by the two procedures with and without curing process are compared. Little difference was observed in the transmission properties at the wavelength 2.94 μm of Er:YAG laser light and 10.6 μm of CO2 laser light. The polymer layer is shown to be stable after 2-h, 5-W, continuous wave CO2 laser light transmission.  相似文献   

5.
Infrared Er : YAG laser delivery systems based on hollow fibers with an internal polymer layer has been developed. The system consists of a hollow fiber as the delivery medium, a launching coupler for effective coupling between the laser beam and the fiber, and a sealed hollow-fiber tip attached at the output end of the fiber. Fabrication process of the fiber and attachment of the delivery system is reported.  相似文献   

6.
Several types of fluorocarbon polymer (FCP)-coated silver hollow glass waveguides have been fabricated for Er:YAG laser delivery by using the improved wet chemical technique and dynamic coating procedure. The straight losses of 2 m long 700 μmØ and 540 μmØ waveguides are 0.4 and 1.0 dB, respectively. The transmission losses of these waveguides are below 1.5 dB even when the waveguides are bent to 180° with the bending radius of either 20 or 15 cm. The waveguides with the small diameters of 320 and 200 μm have also been developed for clinical treatment, which exhibit low enough transmission losses for Er:YAG laser light.  相似文献   

7.
The perforation effects of Er:YAG (2940 nm) and Ho:YAG (2100 nm) lasers radiation on human urinary stones model made from compressed plaster and real human samples were compared in vitro. For mid-infrared laser radiation delivery the special COP/Ag hollow glass waveguides were used. From the interaction experiments the perforation rates were derived and compared for both lasers. From the results it can be evaluated that Er:YAG laser radiation is favourable in comparison with Ho:YAG laser in case of artificial samples perforation efficiency.  相似文献   

8.
Fluorocarbon-polymer (FCP) coated silver hollow stainless steel (St) devices and waveguides have been developed for Er:YAG laser radiation. Full liquid phase techniques have been adopted to coat the silver and FCP layers inside the stainless steel hollow structure. Both straight and bent robust hollow devices have been fabricated as the output optical elements for the delivery system of medical Er:YAG lasers. A robust hollow waveguide with the length of about 1.6 m has also been realized as an actual delivery system.  相似文献   

9.
We demonstrated a high-energy single-frequency erbium-doped yttrium aluminum garnet(Er:YAG)laser.With1470 nm laser diodes(LDs)as pumping sources,single-frequency laser pulses with energy of 28.6 m J,21.6 m J,and 15.0 m J are obtained at pulse repetition frequency of 200 Hz,300 Hz,and 500 Hz,respectively.As far as we know,this is the highest single-frequency pulse energy with the Er:YAG gain medium.With the ring cavity design,pulse duration is maintained at hundreds of nanoseconds.This high-energy single-frequency laser with hundreds of nanoseconds pulse duration is a prospective laser source for light detection and ranging applications.  相似文献   

10.
Sui KR  Shi YW  Tang XL  Zhu XS  Iwai K  Miyagi M 《Optics letters》2008,33(4):318-320
We report on AgI/Ag infrared hollow fiber with low-loss in visible region. Improved methods of silver plating and iodination were proposed to fabricate the hollow fiber. The surface roughness of the silver layer and the silver iodide layer was reduced by the pretreatment with an SnCl2 solution and low iodination temperature. Losses for the Er:YAG and green laser light were 0.4 and 7dB/m. The loss property of green laser beam was low to deliver a pilot beam for the invisible infrared laser light. Owing to the smooth and uniform AgI film, the loss spectrum of the hollow fiber showed clear interference peaks in the visible region. An empirical formula for AgI material dispersion was derived, which is of special importance for the design of high-performance AgI/Ag hollow fiber.  相似文献   

11.
A new kind of cyclic olefin polymer COP-E48R has been selected as the dielectric material for a silver hollow glass tube. Owing to its lower extinction coefficient at the wavelength of 10.6 μm, transmission losses for the CO2 laser light has been reduced significantly in the COP-E48R-coated silver (COP-E48R/Ag) hollow glass waveguide. By properly selecting the film thickness of COP, Er:YAG and CO2 laser light are shown to be transmitted with low loss simultaneously or independently. Delivery properties of red and green pilot beams were also evaluated.  相似文献   

12.
A three-wavelength pulsed laser for dental application is developed. The laser houses the Nd:YAG resonator (1.06/1.32 μm) for soft-tissue treatment and Er:YAG resonator (2.94 μm) for caries removal and fits and fissure treatment. Two heads share the cooling unit and two identical high-voltage power supply modules in order to achieve compactness. The Nd:YAG laser has 10 W at 1.06 μm and 7 W at 1.32 μm with a pulse duration of 100 μs. An Er:YAG laser of 2.94 μm has 3.5 W, 20 Hz and a pulse duration of 250 μs. The beams are delivered through fibers and the laser size is 75×55×32.5 cm.  相似文献   

13.
Hollow-fiber delivery of high-power pulsed Nd:YAG laser light   总被引:1,自引:0,他引:1  
Matsuura Y  Hanamoto K  Sato S  Miyagi M 《Optics letters》1998,23(23):1858-1860
We propose hollow fibers for delivery of high-peak-power pulsed Nd:YAG laser light. Hollow fibers with an internal polymer layer were fabricated by a liquid-phase coating technique. We reduced the losses of the fibers in the near-infrared region by producing a silver film that was very smooth owing to use of an ultrasonic wave for mixing of the silver and the reducer solutions in the silver-plating process. The straight losses of the 1-m-long polymer-coated fibers were 0.3 dB for the 700-mum bore size and 0.1 dB for the 1000-mum bore fiber.  相似文献   

14.
Zhang C  Shen DY  Wang Y  Qian LJ  Zhang J  Qin XP  Tang DY  Yang XF  Zhao T 《Optics letters》2011,36(24):4767-4769
We report on the efficient operation of a high-power erbium-doped polycrystalline Er:YAG ceramic laser at 1617 nm resonantly pumped by a high-power 1532 nm Er,Yb fiber laser. Lasing characteristics of Er:YAG ceramics with different Er3+ concentrations are evaluated and compared. With an output coupler of 15% transmission and 0.5 at. % Er3+-doped YAG ceramic as the gain media, the laser generates 14 W of output power at 1617 nm for 28.8 W of incident pump power at 1532 nm, corresponding to a slope efficiency with respect to incident pump power of 51.7%.  相似文献   

15.
We report what is to our knowledge the first delivery of nanosecond laser pulses through flexible fibers to produce optical sparks in atmospheric-pressure gases. Our work employs a Nd:YAG laser beam (1.064 microm) delivered through a cyclic olefin polymer-coated silver hollow fiber. We studied the beam properties at the fiber exit as a function of the fiber launch geometry. We found that for a low-angle launch (approximately 0.01 rad half-angle), the exit beam has relatively high optical intensity (approximately 2 GW/cm2) and low light divergence (approximately 0.01 rad half-angle) and allows downstream spark formation. The effect of fiber bending on the exit beam and on the ability to make sparks is also investigated.  相似文献   

16.
This study was conducted to analyze the ablation rate and micromorphological aspects of microcavities in enamel and dentin of primary and permanent teeth using a Er: YAG laser system. Micromorphological evaluation has been performed in terms of permanent teeth; however, little information about Er: YAG laser interaction with primary teeth can be found in the literature. Because children have been the most beneficiary patients with laser therapy in our offices, it is extremely necessary to compare the effects of this kind of laser system on the enamel and dentin of permanent and primary teeth. In this study, we used eleven intact primary anterior exfoliated teeth and six extracted permanent molar teeth. We used a commercial laser system: a Er: YAG Twin Light laser system (Fotona Medical Lasers, Slovenia) at 2940 nm, changing average energy levels per pulse (100, 200, 300, and 400 mJ) producing 48 microcavities in enamel and dentin of primary and permanent teeth. Primary teeth are more easily ablated than are permanent teeth, when related to enamel or dentin. However, while this laser system is capable of slowly revealing the enamel’s microstructure, in dentin only the lowest laser energies permit this kind of observation, more easily decomposing the original tissue aspect, when related to primary or permanent teeth. Statistically, the only different factor at the 5% level was an energy per pulse of 400 mJ, confirming the results found in SEM. Our results showed that dentin in both primary and permanent teeth is less resistant to Er: YAG laser ablation; this fact is easily observed under SEM observation and through the ablation rate evaluation.  相似文献   

17.
A maximum energy of 1.6 J at 5 pps of Er:YAG laser light has been transmitted through a flexible ZnS-coated silver hollow waveguide which has an inner diameter of 800 μm and is 116 cm long. The straight waveguide loss is 0.6 dB m−1 and no significant loss and mechanical changes have been found after an endurance test of 10000 pulse transmissions and bending 400 times with a bending radius of 30 cm.  相似文献   

18.
The aim of this study was to evaluate in vitro the influence of Er:YAG laser energy variation to cavity preparation on the morphology of enamel/adhesive system interface, using SEM. Eighteen molars were used and the buccal surfaces were flattened without dentine exposure. The specimens were randomly assigned to two groups, according to the adhesive system (conventional total-etching or self-etching), and each group was divided into three subgroups (bur carbide in turbine of high rotation, Er:YAG laser 250 mJ/4 Hz and Er:YAG laser 300 mJ/4 Hz) containing six teeth each. The enamel/adhesive system interface was serially sectioned and prepared for SEM. The Er:YAG laser, in general, produced a more irregular adhesive interface than the control group. For Er:YAG laser 250 mJ there was formation of a more regular hybrid layer with good tag formation, mainly in the total-etching system. However, Er:YAG laser 300 mJ showed a more irregular interface with amorphous enamel and fused areas, for both adhesive systems. It was concluded that cavity preparation with Er:YAG laser influenced on the morphology of enamel/adhesive system interface and the tissual alterations were more evident when the energy was increased.  相似文献   

19.
1623 nm Er:YAP and 1648 nm Er:YAG lasers resonantly pumped by a solid state Er:glass laser operating at 1535 nm were investigated. Laser generation was reached for Er:YAP and two Er:YAG crystals with different Er ion concentration. The maximal output energies were 20 and 45 mJ for Er:YAP and Er:YAG laser systems, respectively.  相似文献   

20.
A difficult challenge in laser processing at nanosecond time scales is monitoring substrate temperature in the laser focal volume, particularly for mid-infrared laser irradiation where the absorption depth is relatively large and the attained temperatures are often relatively low. Here, we describe time-dependent measurements of the subsurface temperature of a target material following absorption of pulsed mid-infrared (MIR) laser irradiation, by detecting the luminescence from micron-size ceramic phosphor particles (Gd-doped YAG:Ce) embedded in the target material at a concentration of up to 10 %. Temperature calibrations were obtained by measuring the luminescence decay of the probe particles in an oil-bath heater. A silica-nanoparticle film was irradiated by an Er:YAG laser operating in a free-running mode over a fluence range up to but below the ablation threshold, while the third harmonic of the Nd:YAG laser excited the luminescence of the probe particles. From the temperature calibrations, it was possible to infer the thermal history of the target as a function of time delay between the Er:YAG and Nd:YAG laser pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号