首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A heat-treated PVA nanofibrous matrix containing silver (Ag) was prepared by electrospinning an aqueous 10 wt% PVA solution and followed by heat treatment at 150 °C for 10 min. The average diameter of the as-spun and heat-treated PVA nanofibers was 330 nm. The heat-treated PVA nanofibrous matrix containing Ag was irradiated with UV light to transform the Ag ions in the nanofibrous matrix into Ag nanoparticles. The in vitro cytotoxicity of the Ag ions and/or nanoparticles on normal human epidermal keratinocytes (NHEK) and fibroblasts (NHEF) cultures was examined. The PVA nanofibrous matrix containing Ag showed slightly higher level of attachment and spreading in the early stage culture (1 h) than the PVA nanofibers without Ag (control). However, compared with the PVA nanofibers without Ag, the heat-treated and UV-irradiated PVA nanofibers, containing mainly Ag ions and nanoparticles, respectively, showed reduced cell attachment and spreading. This shows that both Ag ions and Ag nanoparticles are cytotoxic to NHEK and NHEF. There was no significant difference in cytotoxicity to NHEK and NHEF between Ag ions and Ag nanoparticles. NHEF appeared to be more sensitive to Ag ions or particles than NHEK. In addition, the residual nitrate ions (NO3) in the PVA nanofibers had an adverse effect on the culture of both cells.  相似文献   

2.
An efficient, novel and convenient method for the synthesis of modified polyacrylonitrile (PAN) with antibacterial property is reported. The modification of PAN was prepared by a nitrile click chemistry reaction with sodium azide (NaN3) and silver nitrate (AgNO3) as catalyst to yield antibacterial polymeric materials with 5-vinyltetrazole units. The results showed that 5-vinyltetrazole units had coordinated with silver ion (Ag+). Through the electrostatic spinning technology, the post-modification PAN nanofibers (PAN–Ag+ nanofibers) were prepared and the fibers were tested for their antimicrobial properties by the bacterial infection experiment. Afterwards, the antibacterial and stable performance of different proportions of silver ions in PAN nanofibers has been compared. The PAN–Ag+ nanofibers are characterized for mechanical and thermomechanical properties, structural analysis, appearance characteristics, as well as the antibacterial properties. And the nanofibers exhibit marvelous chemical stability according to the thermogravimetric analysis. When at 800 °C, the PAN decomposed about 60%, while the decomposition of the PAN–Ag+s was 40%. Based on the bacterial infection experiment, PAN–Ag+ nanofibers’ antibacterial properties were stronger with the increase of silver ions, such as the number of bacteria clone was smaller and the bacteriostatic ring was larger. Hence, with combination of silver ions, the final polymers show strong antimicrobial properties.  相似文献   

3.
Summary: Poly(N‐vinylpyrrolidone) (PVP) was used in two methods to prepare polymer nanofibers containing Ag nanoparticles. The first method involved electrospinning the PVP nanofibers containing Ag nanoparticles directly from the PVP solutions containing the Ag nanoparticles. N,N‐Dimethylformamide was used as a solvent for the PVP as well as a reducing agent for the Ag+ ions in the PVP solutions. In the second method, poly(vinyl alcohol) (PVA) aqueous solutions were electrospun with 5 wt.‐% of the PVP containing Ag nanoparticles. The Ag nanoparticles were evenly distributed in the PVA nanofibers. PVP containing Ag nanoparticles could be used to introduce Ag nanoparticles to other polymer nanofibers that are miscible with PVP.

TEM image of a PVA nanofiber electrospun with 5 wt.‐% of the PVP containing Ag nanoparticles.  相似文献   


4.
Silver (Ag) nanoparticles were prepared in PAN nanofibrous film by a sol–gel derived electrospinning and subsequent chemical reduction for 30 min in hydrazine hydroxide (N2H5OH) aqueous solution. Antimicrobial properties of the AgNO3/PAN precursor solution against gram positive Staphylococcus aureus ATCC 6538 and gram negative Escherichia coli ATCC 25922 were investigated. The formation of clear zone suggested that the PAN solution containing Ag+ ions were effective on the inhibition of bacterial growth. The Ag/PAN nanocomposite film, characterized by XRD, TEM and UV absorption spectrophotometer, revealed that highly crystallized cubic Ag particles with diameters of less than 5.8 nm were dispersed homogeneously in PAN nanofibers.  相似文献   

5.
Nanostructured Ag films composed of nanoparticles and nanorods can be formed by the ultrasonication of ethanol solutions containing Ag2O particles. The present work examined the formation process of these films from ethanol solutions by two different agitation methods, including ultrasonication and mechanical stirring. The mass-transfer process from Ag2O particles to ethanol solvent is accelerated by the mechanical effects of ultrasound. Ag+ ions and intermediately reduced Ag clusters were released into the ethanol. These Ag+ ions and Ag clusters provide absorption bands at 210, 275 and 300 nm in UV-vis spectra. These bands were assigned to the absorption of Ag+, Ag 4 2+ and Agn (n?≈?3). The Agn clusters that readily grow to become Ag nanoparticles were formed due to the surface reaction of Ag2O particles with ethanol under ultrasonication. The reactions of Ag+ ions in ethanol to form Ag nanomaterials (through the formation of Ag 4 2+ clusters) were also accelerated by ultrasonication.  相似文献   

6.
Silver-7, 7, 8, 8-tetracyanoquinodimethane (AgTCNQ) microrods are synthesized through the photoelectrochemical catalysis of TiO2 nanoparticles. When illuminated by UV light, Ag nanoclusters deposit on TiO2 nanoparticles dispersed in the AgNO3/alcohol solution. When illuminated by visible light, the metallic Ag on TiO2 nanoparticles will dissolve in the solution as Ag+ while the released electron will be accepted by TCNQ to form TCNQ. Consequently, AgTCNQ microrods are obtained through a photoinduced bipolar mechanism, which is valuable in the chemical synthesis involving cooperative effect or coupling processes.  相似文献   

7.
In order to improve the antimicrobial activity of bacterial cellulose (BC), the silver nanoparticles (Ag NPs) were in situ fabricated on the BC membranes, affording BC and Ag hybrid antimicrobial materials, BC + Ag, which possesses excellent antimicrobial performance. Typically, carboxyl groups were firstly introduced into BC by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation. Then, the carboxyl-functionalized BC was performed with ion-exchange reaction to change the sodium ions into Ag+ by immersing in AgNO3 aqueous solution, generating Ag+ anchored BC. Finally, two types of distinct reductive reagents including NaBH4 and sodium citrate were employed to transform Ag+ into Ag NPs to fabricate BC + Ag. The diameters of Ag NPs were determined to be 3.8 nm for NaBH4-reduced BC + Ag, and 22.0 nm for sodium citrate-reduced one, respectively. The silver content of BC + Ag were determined to be 1.944 and 2.895 wt% for NaBH4-reduced sample and sodium citrate-reduced one, respectively. Two types of BC + Ag both showed a slow and persistent Ag+ release profile, but the NaBH4-reduced one released much more Ag+ than that of sodium citrate under the same measurement condition. In-depth antibacterial analysis via the disc diffusion and colony forming count method disclosed that BC + Ag exhibited strong bactericidal effects against both Escherichia coli and Staphylococcus aureus. And the antibacterial activity of NaBH4-reduced BC + Ag was higher than the sodium citrate-reduced one. Overall, this study would further improve the antibacterial efficiency of BC + Ag.  相似文献   

8.
The Ag-PVA nanocomposites with different contents of inorganic phase were prepared by reduction of Ag+ ions in aqueous PVA solution by gamma irradiation followed by solvent evaporation. Optical properties of the colloidal solutions and the nanocomposite films were investigated using UV-vis spectroscopy. Structural characterization of the Ag nanoparticles was performed by TEM and XRD. Interaction of the Ag nanoparticles with polymer matrix and the heat resistance of the nanocomposites were followed by IR spectroscopy and DSC analysis. IR spectra indicated that Ag nanofiller interact with PVA chain over OH groups. The changes of heat resistance upon the increase of the content of inorganic phase are correlated to the adsorption of polymer chains on the surface of Ag nanoparticles.  相似文献   

9.
Formation of silver nanoparticles in the course of chemical reduction of AgNO3 with arabinogalactan in aqueous alkaline solution was studied by electronic absorption spectroscopy and X-ray diffraction analysis. The pH of the solution was found to be the major factor affecting the degree of reduction of Ag+ ions. The probable reaction mechanism was discussed. Composites containing up to 58% Ag, with the metal particle size of 7–16 nm, were prepared. The nanoparticle size can be controlled by varying the reactant ratio AgNO3: arabinogalactan. Chemical modification of arabinogalactan was confirmed by IR and 13C NMR spectroscopy and by TLC.  相似文献   

10.
In surface-enhanced Raman scattering (SERS) technique the preparation of metal substrates containing minimum hindrance from impurities is an important issue. The synthesis of silver nanoparticles (Ag NPs) active as SERS substrates and having the above-mentioned advantage, were obtained by electron beam irradiation of Ag+ aqueous solutions. Ag+ ions were reduced by free radicals radiolytically generated in solution without the addition of chemical reductants or stabilizing agents.The metal colloids were characterised by UV-Vis spectroscopy and scanning electron microscopy, monitoring the nanoparticles’ growth process that depends on the irradiation dose and the initial AgNO3 concentration. Nanoparticles of long-time stability and with different size and shape, included silver nanocubes, were synthesised by varying the irradiation dose. Different tests on the SERS activity of Ag NPs obtained by electron beam irradiation were performed by using benzenethiol as a probing molecule, achieving a good magnification of the adsorbate Raman bands.  相似文献   

11.
The present communication reports on the preparation of polyaniline nanofibers (PANINFs) by chemical oxidative polymerization of aniline under rapid stirring using ammonium persulfate as the oxidant in acidic aqueous media in the presence of carbon nanoparticles. The subsequent treatment of such nanofiber with a AgNO3 aqueous solution leads to in situ chemical reduction of Ag+ on them to form Ag nanoparticle-decorated PANINFs. The resultant composites show good catalytic activity toward the reduction of H2O2. An effective enzymeless H2O2 sensor based on such composites is also constructed. It exhibits a fast amperometric response time 2 s, and it has a linear detection range from 0.1 to 60 mM and detection limit of 0.9 μM at a signal-to-noise ratio of 3, respectively.  相似文献   

12.
Silver nanoparticles (Ag NPs) are fabricated through γ-irradiation reduction of silver ions in aqueous starch solutions. The UV–vis analyses show smaller sizes of Ag NPs produced, with higher yields, as the irradiation doses and/or Ag+ concentrations are increased. Higher concentrations of starch enhance the yields of Ag NPs, with no significant effects on their size. The most economical Ag NPs are produced at 5 kGy γ-irradiation of a 2×10−3 M solution of AgNO3 containing 0.5% starch. They show a relatively narrow size distribution, indicated by TEM and its corresponding size distribution histogram. The XRD pattern confirms the face-centered cubic (fcc) Ag NPs embedded in starch molecules. Interactions between these nanoparticle surfaces and starch oxygen atoms are indicated by FT–IR. Antibacterial activities of Ag NPs against Escherichia coli appear dependent on the γ-ray doses applied.  相似文献   

13.
Cobalt sulfide coatings have been investigated by means of cyclic voltammetry in 0.1 M KClO4 and 0.1 M NaOH solutions and analyzed using X-ray photoelectron spectroscopy. They have been shown to contain CoS(OH), CoS and Co(OH)2. After treating such Co sulfide coatings with AgNO3 solution, their composition changes: both the cobalt and oxygen content decreases and Ag (up to 85 at%) appears in the coating as Ag2S, Ag2O and metallic Ag. Co(II) compounds react with Ag+ ions according to an exchange reaction [CoS+2Ag++2H2O→Ag2S+Co(OH)2+2H+]. In the course of the reaction of Co(OH)2 with silver ions, a redox process occurs, giving metallic silver [Co(OH)2+Ag++H2O→Ag°+Co(OH)3+H+ or Co(OH)2+Ag+→Ag°+CoO(OH)+H+]. Ag2S reduction takes place at more positive potentials than Cu reduction; therefore sulfide layers of cobalt modified with silver ions, unlike unmodified ones, may be plated with Cu from both acid and alkaline electrolytes. Electronic Publication  相似文献   

14.
Stable nanoparticle colloids of silver were obtained by irradiation of aqueous-alcoholic solutions of AgNO3 in the presence of mesoporous SiO2 powder and films modified with benzophenone (BP/SiO2). Colloidal solutions of Ludox silica were used to stabilize the photochemically produced nanoparticles of silver in solution. Formation of nanoparticles of Ag on the surface of mesoporous silica occurred on irradiation of SiO2 modified with silver ions (Ag+/SiO2) in the presence of benzophenone solution.__________Translated from Teoreticheskaya i Eksperimental’naya Khimiya, Vol. 41, No. 2, pp. 100–104, March–April, 2005.  相似文献   

15.
Cast‐hybrid films composed of polyvinyl alcohol (PVA) and silver nitrate were treated according to three different ways, thermal annealing, UV‐irradiation, and chemical reduction by a borohydride solution, to obtain PVA/silver nanocomposite films. The nanostructuration process was studied as a function of the treatment conditions, and discussed as a function of the mobility state of the polymer chains in the nanocomposite matrix during treatment. A homogeneous dispersion of crystalline silver nanoparticles was obtained by thermal annealing above Tg and below Tm and UV‐lamp irradiation below Tg. For these two treatments, the major processing parameters were the annealing temperature and time and the UV‐exposure time, respectively. For low‐conversion rate in Ag(0), the films evolved upon ageing at room temperature. Totally different morphology and Ag(0) conversion were achieved by chemical reduction in a borohydride solution. All the silver ions were reduced into Ag(0), and crystalline silver nanoparticles layers parallel to the film surface were observed after the treatment. This morphology was related to the high‐swollen state of the polymer matrix during treatment. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2062–2071, 2008  相似文献   

16.
Silver ion complexes of peptides [M + (Ag)n]+, M = angiotensin I or substance P where n = 1–8 and 17–23 for angiotensin I and n = 1–5 for substance P, are identified and characterized using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOFMS). The Ag+ coordination number exceeds the number of available amino acid residues in angiotensin I whereas the number of observed complexes in substance P is less than the number of amino acid residues in it. The larger coordination number of angiotensin I with Ag+ indicates the simultaneous binding of several Ag+ ions to the amino acid residue present in it. The lower number of observed complexes in substance P suggests the binding of two or more residues to one Ag+ ion. The presence of trifluoroacetic acid in the peptide samples reduces the Ag+ coordination ability in both the peptides which indicates that the basic residues in it are already protonated and do not participate in the Ag+‐binding process. The Ag+ ion also forms a complex with the α‐cyano‐4‐hydroxycinnamic acid (CHCA) matrix and is observed in the MALDI mass spectra and the formation of [CHCA + Ag]+, [CHCA + AgNO3]+ and [(CHCA)2 + Ag]+ ions is due to the high binding affinity of Ag+ to the CN group of CHCA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Novel semi‐interpenetrating polymer networks (SIPNs) based on segmented polyurethane‐urea and poly(N‐isopropylacrylamide‐co‐acrylic acid‐co‐butylmethacrylate) (poly(NIPAM‐co‐AA‐BMA)) were synthesized for the fabrication of silver nanoparticles (AgNPs) in the SIPN system that could be useful for wound dressing applications. The obtained SIPN films, after neutralization, showed high swelling in aqueous environments and good mechanical properties in both dry and hydrated states. Analysis of the dried SIPN films by differential scanning calorimetry and dynamic viscoelastic measurements revealed the presence of crosslinked copolymers as well as homopolymers in the SIPN system. The neutralized swollen SIPN film coordinated with the silver ions (Ag+) that were incorporated into it. AgNPs were subsequently formed by the reduction of Ag+. The formation of AgNPs was characterized by UV‐visible spectroscopy, atomic force microscopy, wide‐angle X‐ray diffraction, and thermogravimetric analysis (TGA). Bactericidal activity tests revealed a distinct zone of microbial inhibition within and around the silver‐doped SIPN films. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4950–4962, 2009  相似文献   

18.
We proposed a thought of active capture of particles by improving the interaction force between fibers and particles. Nanoparticle‐enhanced tubular nanofibers (Ag‐SPNTs) were prepared by template‐free cationic polymerization followed by surface modification. Ag‐SPNTs have coarse surface and bamboo‐like tubular structure with a diameter of approximately 80‐150 nm. Ag nanoparticles were embedded on the nanofibers surface, and the content of Ag nanoparticles in the nanofibers could be tuned by changing the concentration of [Ag(NH3)2]+ in the preparation process. f‐d curve measured by AFM showed that increasing the content of Ag nanoparticles in the nanofibers resulted in the enhanced interaction force between the nanofiber surface and particles. Particle matter capture test showed that the number of captured microscaled/naonoscaled particles on the fiber surface increased obviously for the nanoparticle‐enhanced tubular nanofibers (Ag‐SPNTs) compared to the nanofibers without nanoparticle (SPNTs), probably due to the increased interaction force and adhesion energy between fiber surface and particles. Filtration property test showed that the Ag‐SPNTs fiber films had a better filtration performance with a higher filter efficiency and QF value than that of SPNTs. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   

19.
Silver nanoparticles were prepared by UV irradiation from silver salts, such as AgBF4 or AgNO3, when dissolved in an amphiphilic film of poly((oxyethylene)9 methacrylate)‐graft‐poly((dimethyl siloxane)n methacrylate), POEM‐g‐mPDMS. The in situ formation of silver nanoparticles in the graft copolymer film was confirmed by transmission electron microscopy (TEM), UV‐visible spectroscopy, and wide angle X‐ray scattering (WAXS). The results demonstrated that the use of AgBF4 yielded silver nanoparticles with a smaller size (~5 nm) and narrower particle distribution when compared with AgNO3. The formation of silver nanoparticles was explained in terms of the interaction strength of the silver ions with the ether oxygens of POEM, as revealed by differential scanning calorimetry (DSC) and X‐ray photoelectron spectroscopy (XPS). It was thus concluded that a stronger interaction of silver ions with the ether oxygens results in a more stable formation of silver nanoparticles, which produces uniform and small‐sized nanoparticles. DSC and small angle X‐ray scattering (SAXS) data also showed the selective incorporation and in situ reduction of the silver ions within the hydrophilic POEM domains. Excellent mechanical properties of the nanocomposite films (3–5 × 105 dyn/cm2) were observed, mostly because of the confinement of silver nanoparticles in the POEM chains as well as interfaces created by the microphase separation of the graft copolymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1283–1290, 2007  相似文献   

20.
ZHENG  Pengcheng  HU  Juan  SHEN  Guoli  JIANG  Jianhui  YU  Ruqin  LIU  Guokun 《中国化学》2009,27(11):2137-2144
By simply adding ascorbic acid in advance of AgNO3, the size and shape controllable Au/Ag bimetallic nanoparticles (NP) were prepared in the traditional Au growth solution free of seed at room temperature. The size distribution of NP is well uniform with ca. 10%–15% standard deviation in diameter. By changing CTAB concentration, the size and shape of NPs are tunable. After researching the surface‐enhanced Raman spectroscopy (SERS) behavior of the prepared NPs, an enhancement factor varied from 4.3×104 to 1.1×105 was obtained for the NP centered at ca. (64±8) nm. Electrochemical cyclic voltammetric results revealed that the so formed nanoparticles were Au riched Au/Ag bimetallic NP, and this formation might be due to the disproportionation reaction of Au+ prompted by Ag+ and the under potential deposition process of Ag+ on Au.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号