首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The direct preparation of grafting polymer brushes from commercial poly (vinylidene fluoride) (PVDF) films with surface‐initiated atom transfer radical polymerization (ATRP) is demonstrated. The direct initiation of the secondary fluorinated site of PVDF facilitated grafting of the hydrophilic monomers from the PVDF surface. Homopolymer brushes of 2‐(N,N‐dimethylamino)ethyl methacrylate (DMAEMA) and poly (ethylene glycol) monomethacrylate (PEGMA) were prepared by ATRP from the PVDF surface. The chemical composition and surface topography of the graft‐functionalized PVDF surfaces were characterized by X‐ray photoelectron spectroscopy, attenuated total reflectance/Fourier transform infrared spectroscopy, and atomic force microscopy. A kinetic study revealed a linear increase in the graft concentration of poly[2‐(N,N‐dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[poly(ethylene glycol) monomethacrylate] (PPEGMA) with the reaction time, indicating that the chain growth from the surface was consistent with a controlled or living process. The living chain ends were used as macroinitiators for the synthesis of diblock copolymer brushes. The water contact angles on PVDF films were reduced by the surface grafting of DMAEMA and PEGMA. Protein adsorption experiments revealed a substantial antifouling property of PPEGMA‐grafted PVDF films and PDMAEMA‐grafted PVDF films in comparison with the pristine PVDF surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3434–3443, 2006  相似文献   

2.
Poly(methyl methacrylate) (PMMA) was anchored to multiporous poly(vinylidine fluoride) (PVDF) surface via electron beam preirradiation grafting technique to prepare PVDF/PMMA brushes. The conformation of the PVDF/PMMA brushes was verified through Attenuated total reflection‐Fourier transform infra red spectroscopy (ATR‐FTIR), energy dispersive X‐ray spectroscopy (EDX), and scanning electron microscopy (SEM). Thermal stability of PVDF/PMMA brushes was characterized by thermo gravimetric analysis (TGA). The degradation of PVDF/PMMA brushes showed a two‐step pattern. PVDF/PMMA brushes membrane could be used as polymer electrolyte in lithium‐ion rechargeable batteries after it was activated by uptaking 1 M LiPF6/EC‐DMC (ethylene carbonate/dimethyl carbonate; EC:DMC = 1:1 by volume) electrolyte solution. The activated membrane showed high ionic conductivity, 6.1 × 10?3 S cm?1 at room temperature, and a good electrochemical stability up to 5.0 V. The excellent performances of multiporous PVDF‐g‐PMMA membranes suggest that they are suitable for application in high‐performance lithium‐ion batteries. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 751–758, 2008  相似文献   

3.
A simple method for preparing cationic poly[(ar‐vinylbenzyl)trimethylammonium chloride)] [poly(VBTAC)] brushes was used by combined technology of “click chemistry” and reversible addition‐fragmentation chain transfer (RAFT) polymerization. Initially, silicon surfaces were modified with RAFT chain transfer agent by using a click reaction involving an azide‐modified silicon wafer and alkyne‐terminated 4‐cyanopentanoic acid dithiobenzoate (CPAD). A series of poly(VBTAC) brushes on silicon surface with different molecular weights, thicknesses, and grafting densities were then synthesized by RAFT‐mediated polymerization from the surface immobilized CPAD. The immobilization of CPAD on the silicon wafer and the subsequent polymer formation were characterized by X‐ray photoelectron spectroscopy, water contact angle measurements, grazing angle‐Fourier transform infrared spectroscopy, atomic force microscopy, and ellipsometry analysis. The addition of free CPAD was required for the formation of well‐defined polymer brushes, which subsequently resulted in the presence of free polymer chains in solution. The free polymer chains were isolated and used to estimate the molecular weights and polydispersity index of chains attached to the surface. In addition, by varying the polymerization time, we were able to obtain poly(VBTAC) brushes with grafting density up to 0.78 chains/nm2 with homogeneous distributions of apparent needle‐like structures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Iron‐mediated atom transfer radical polymerization using activators generated by electron transfer directly from the secondary fluorine atoms on the poly(vinylidene fluoride) (PVDF) backbone, using methyl methacrylate (MMA) and poly (ethylene glycol) methyl ether methacrylate (PEGMA) as the monomers, FeCl3·6H2O as the catalyst, PPh3 as the ligand, and vitamin C as the reducing agent, was demonstrated in the presence of limited amounts of air. The successful syntheses of the corresponding graft copolymers PVDF‐g‐PMMA and PVDF‐g‐PPEGMA were characterized by nuclear magnetic resonance, Fourier transform infrared and X‐ray photoelectron spectroscopy, respectively. The graft copolymers PVDF‐g‐PPEGMA can be readily cast into porous hydrophilic microfiltration membranes by phase inversion in an aqueous medium. The morphologies were characterized by scanning electron microscopy. The surface and bulk hydrophilicity were evaluated on the basis of static water contact angle and the steady adsorption of bovine serum albumin. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
This work reports the surface‐initiated atom transfer radical polymerization (ATRP) from hydrogen plasma‐treated porous poly(tetrafluoroethylene) (PTFE) membranes using the C? F groups as initiators. Hydrogen plasma treatment on PTFE membrane surfaces changes their chemical environment through defluorination and hydrogenation reactions. With the hydrogen plasma treatment, the C? F groups of the modified PTFE membrane surface become effective initiators of ATRP. Surface‐initiated ATRP of poly(ethylene glycol) methacrylate (PEGMA) is carried out to graft PPEGMA chains to PTFE membrane surfaces. The chain lengths of poly(PEGMA) (PPEGMA) grafted on PTFE surfaces increase with increasing the reaction time of ATRP. Furthermore, the chain ends of PPEGMA grown on PTFE membrane surfaces then serve as macroinitiators for the ATRP of N‐isopropylacrylamide (NIPAAm) to build up the PPEGMA‐b‐PNIPAAm block copolymer chains on the PTFE membrane surfaces. The chemical structures of the modified PTFE membranes are characterized using X‐ray photoelectron spectroscopy. The modification increases the surface hydrophilicity of the PTFE membranes with reductions in their water‐contact angles from 120° to 60°. The modified PTFE membranes also show temperature‐responsive properties and protein repulsion features owing to the presence of PNIPAAM and PPEGMA chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2076–2083, 2010  相似文献   

6.
Surface‐initiated atom transfer radical polymerization (SI‐ATRP) of N‐isopropylacrylamide (NIPAM) on silicon wafer in the presence of 2‐mercaptoethanol (ME) chain transfer agent was conducted in attempt to create controllable hydroxyl‐terminated brushes. The initiator‐immobilized substrate, was prepared by the esterification of hydroxyl groups on silicon wafer with 2‐bromopropionyl bromide (2‐BPB); followed by the ATRP of NIPAM using a catalyst system, that is, Cu(I)Br/2,2′‐bipyridine (2,2′‐bpy) and a chain transfer agent, that is, ME. The formation of homogeneous tethered poly(N‐isopropylacrylamide) (poly(NIPAM) brushes with hydroxyl end‐group, whose thickness can be tuned by chancing ME concentration, is evidenced by using the combination of grazing angle attenuated total reflectance‐Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, ellipsometry, atomic force microscopy, gel permeation chromatography, and water contact‐angle measurements. The calculation of grafting parameters from experimental measurements indicated the synthesis of densely grafted poly(NIPAM) films with hydroxyl end‐group on silicon wafer and allowed us to predict a ME concentration for forming a “brush” conformation for the chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3880–3887, 2010  相似文献   

7.
A new “grafting from” strategy for grafting of different monomers (methacrylates, acrylates, and acrylamide) on poly(vinylidene fluoride) (PVDF) backbone is designed using atom transfer radical coupling (ATRC) and atom transfer radical polymerization (ATRP). 4‐Hydroxy TEMPO moieties are anchored on PVDF backbone by ATRC followed by attachment of ATRP initiating sites chosen according to the reactivity of different monomers. High graft conversion is achieved and grafting of poly(methyl methacrylate) (PMMA) exhibits high degree of polymerization (DPn = 770) with a very low graft density (0.18 per hundred VDF units) which has been increased to 0.44 by regenerating the active catalyst with the addition of Cu(0). A significant impact on thermal and stress–strain property of graft copolymers on the graft density and graft length is noted. Higher tensile strain and toughness are observed for PVDF‐g‐PMMA produced from model initiator but graft copolymer from pure PVDF exhibits higher tensile strength and Young's modulus. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 995–1008  相似文献   

8.
Zinc antimonate nanoparticles consisting of antimony and zinc oxide were surface modified in a methanol solvent medium using triethoxysilane‐based atom transfer radical polymerization (ATRP) initiating group (i.e.,) 6‐(2‐bromo‐2‐methyl) propionyloxy hexyl triethoxysilane. Successful grafting of ATRP initiator on the surface of nanoparticles was confirmed by thermogravimetric analysis that shows a significant weight loss at around 250–410 °C. Grafting of ATRP initiator onto the surface was further corroborated using Fourier transform Infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectroscopy (XPS). The surface‐initiated ATRP of methyl methacrylate (MMA) mediated by a copper complex was carried out with the initiator‐fixed zinc antimonate nanoparticles in the presence of a sacrificial (free) initiator. The polymerization was preceded in a living manner in all examined cases; producing nanoparticles coated with well defined poly(methyl methacrylate) (PMMA) brushes with molecular weight in the range of 35–48K. Furthermore, PMMA‐grafted zinc antimonate nanoparticles were characterized using Thermogravimetric analysis (TGA) that exhibit significant weight loss in the temperature range of 300–410 °C confirming the formation of polymer brushes on the surface with the graft density as high as 0.26–0.27 chains/nm2. The improvement in the dispersibility of PMMA‐grafted zinc antimonate nanoparticles was verified using ultraviolet‐visible spectroscopy and transmission electron microscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
采用表面引发的原子转移自由基聚合法(ATRP)在聚偏二氟乙烯(PVDF)表面制备结构可控的聚甲基丙烯酸甲酯刷。通过碱处理和紫外光照溴代的方法,将ATRP引入到PVDF表面; 然后采用ATRP法将甲基丙烯酸甲酯接枝到溴代的PVDF表面。采用傅里叶变换红外光谱和X-射线光电子能谱对改性前后PVDF表面的结构进行了表征。结果表明甲基丙烯酸甲酯成功地接枝到了PVDF表面。  相似文献   

10.
Poly(2,2,2‐trifluoroethyl methacrylate) (PTFEMA), a partially fluorinated polymer, was directly grafted from silicon wafer surfaces by a surface‐initiated atom‐transfer radical polymerization (ATRP). The polymer layer thickness increased linearly with monomer conversion and molecular weight of free polymers in solution. The thickness was mainly determined by the experimental conditions such as activator/deactivator ratio, monomer/catalyst ratio, and monomer concentration. PTFEMA layers of more than 100‐nm thick were obtained. The grafted PTFEMA chains were “living” and allowed the extension of a second block of PMMA. X‐ray photoelectron spectroscopy study showed that the chemical compositions at the surfaces agreed well with their theoretical values. A novel surface‐attachable difunctional initiator was also synthesized and applied to the grafting of PTFEMA. The grafting density was doubled using this difunctional initiator, from 0.48 to 0.86 chains/nm2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1252–1262, 2006  相似文献   

11.
The facile and efficient one‐pot synthesis of monodisperse, highly crosslinked, and “living” functional copolymer microspheres by the ambient temperature iniferter‐induced “living” radical precipitation polymerization (ILRPP) is described for the first time. The simple introduction of iniferter‐induced “living” radical polymerization (ILRP) mechanism into precipitation polymerization system, together with the use of ethanol solvent, allows the direct generation of such uniform functional copolymer microspheres. The polymerization parameters (including monomer loading, iniferter concentration, molar ratio of crosslinker to monovinyl comonomer, and polymerization time and scale) showed much influence on the morphologies of the resulting copolymer microspheres, thus permitting the convenient tailoring of the particle sizes by easily tuning the reaction conditions. In particular, monodisperse poly(4‐vinylpyridine‐co‐ethylene glycol dimethacrylate) microspheres were prepared by the ambient temperature ILRPP even at a high monomer loading of 18 vol %. The general applicability of the ambient temperature ILRPP was confirmed by the preparation of uniform copolymer microspheres with incorporated glycidyl methacrylate. Moreover, the “livingness” of the resulting polymer microspheres was verified by their direct grafting of hydrophilic polymer brushes via surface‐initiated ILRP. Furthermore, a “grafting from” particle growth mechanism was proposed for ILRPP, which is considerably different from the “grafting to” particle growth mechanism in the traditional precipitation polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
Poly(vinylidene fluoride) (PVDF) is known for its biocompatibility, piezo and pyro‐electricity, and membrane forming capability. In order to tune its properties, modification through grafting from approach by atom transfer radical polymerization (ATRP) is preferred. Hydrophilic polymers like poly(ethylene glycol) methacrylate, poly(methacrylic acid), poly(dimethylaminoethyl methacrylate) (PDMAEMA), and so forth have been anchored from PVDF backbone in order to make permeation of water molecules through the PVDF based membranes. The successful solution grafting of PDMAEMA chains from PVDF backbone by ATRP resulted appreciable graft conversion and hence its bulk properties showed a significant change. This water soluble graft copolymer shows incredible mechanical and adhesive properties. PVDF‐g‐poly(n‐butyl methacrylate) generates honey‐comb porous film using “breath figure” technique. Recently, they have used further improvement of grafting where model ATRP initiators are anchored using atom transfer radical coupling and used them as macroinitiators for grafting. This approach simplified the grafting reactions even more and enabled successful grafting of a large number of monomers under relatively less drastic conditions with appreciable conversion compared with the previous conditions. This technique has resulted interesting solution properties, ion and electron conducting PVDF, antifouling membrane, super glue and super tough materials, capable of generating metal nanoparticles tunable with pH and temperature. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2569–2584  相似文献   

13.
In this investigation, solution grafting of acrylic acid (AA) in presence of benzoyl peroxide (BPO) was carried out onto metallocene‐based “poly(ethylene‐octene) elastomers” (POE) as well as “poly(ethylene‐butene) elastomers” (PBE), to impart polarity on the non‐polar rubbery matrix and also to study the effects of crystallinity and pendant chain length on the “grafting percentage” and “percent gel yield” at optimized conditions for all the POE and PBE systems. Reaction parameters were optimized on the basis of the relative proportions of graft and gel formations obtained through %weight gain, Fourier Transform infrared spectroscopy and elemental analysis. The effect of grafting at its maximum level on various physico‐mechanical properties was also thoroughly investigated by using X‐ray diffraction (XRD), differential scanning calorimetry (DSC), mechanical, dynamic mechanical (DMTA), and thermogravimetric analysis (TGA) and the properties were correlated with the structure of the modified polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5529–5540, 2007  相似文献   

14.
2‐Hydroxyethyl acrylamide was successfully polymerized via single‐electron transfer initiation on the silicon surface and propagation through the reversible addition–fragmentation chain transfer (SET‐RAFT) polymerization at ambient temperature for different polymerization times. This work is the first time application of the surface‐initiated SET‐RAFT mechanism to afford the preparation of well‐defined poly(2‐hydroxyethyl acrylamide) [poly(HEAAm)] brushes at ambient temperature. The polymerization was well controlled and produced poly(HEAAm) brushes on the silicon surface with a well‐defined target molecular weight. The controlled nature of the polymerization was further demonstrated in the presence of sulfur atoms at the chain ends in X‐ray photoelectron spectroscopy experiments. The grafting density (σ, chains nm?2) and the average distance between grafting points (D, nm) were found to be 0.42 chains nm?2 and 1.74 nm, respectively, indicating moderate grafting density. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1140–1146  相似文献   

15.
Well‐defined, high‐density poly(2‐(2‐methoxyethoxy)ethyl methacrylate) [poly(MEO2MA)] brushes were fabricated through a reliable strategy by the combination of self‐assembly of a monolayer of 3‐aminopropyltrimethoxy silane on silicon surface to immobilize 4‐cyano‐4‐(dodecylsulfanylthiocarbonyl)sulfanyl pentanoic acid chain transfer agent and reversible addition‐fragmentation chain transfer‐mediated polymerization of MEO2MA. The whole fabrication process of the poly(MEO2MA) brushes was followed by water contact angle, grazing angle‐Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and atomic force microscopy. Characterization of the poly(MEO2MA) brushes, such as molecular weight and thickness determination, were measured by gel permeation chromatography and ellipsometry, and the grafting density was estimated. The temperature‐responsive property of the poly(MEO2MA) brushes was further investigated and the result verified the brush‐to‐mushroom phase transition of the poly(MEO2MA) chains from low to high temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
This work uses a simple “grafting through” approach in the preparation of anhydrous poly(vinylidene fluoride) (PVDF)‐g‐PVTri polymer electrolyte membranes (PEMs). Alkaline‐treated PVDF was used as a macromolecule in conjunction with vinyltriazole in the graft copolymerization. The obtained polymer was subsequently doped with triflic acid (TA) at different stoichiometric ratios with respect to triazole units and the anhydrous PEMs (PVDF‐g‐PVTri‐(TA)x) were prepared. All samples were characterized by FTIR and 1H NMR. The composition of PVDF‐g‐PVTri was determined by energy dispersive spectroscopy. Thermal properties of the membranes were examined by thermogravimetric analysis and differential scanning calorimetry. The surface roughness and morphology of the membranes were studied using atomic force microscopy, X‐ray diffraction, and scanning electron microscopy. PVDF‐g‐PVTri‐(TA)3 (C3‐TA3) with a degree of grafting of 47.22% showed a maximum proton conductivity of 0.09 S cm?1 at 150 °C and anhydrous conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1885–1897  相似文献   

17.
Living anionic surface‐initiated polymerization on flat gold substrates has been conducted to create uniform homopolymer and diblock copolymer brushes. A 1,1‐diphenylethylene (DPE) self‐assembled monolayer was used as the immobilized precursor initiator. n‐BuLi was used to activate the DPE in tetrahydrofuran at –78 °C to initiate the polymerization of different monomers (styrene, isoprene, ethylene oxide, and methyl methacrylate). Poly(styrene) (PS) and poly(ethylene oxide) (PEO) in particular were first investigated as grafted homopolymers, followed by their copolymers, including poly(isoprene)‐b‐poly(methylmethacrylate) (PI‐b‐PMMA). A combined approach of spectroscopic (Fourier transform infrared spectroscopy, surface plasmon spectroscopy, ellipsometry, X‐ray photoelectron spectroscopy) and microscopic (atomic force microscopy) surface analysis was used to investigate the formation of the polymer brushes in polar solvent media. The chemical nature of the outermost layer of these brushes was studied by water contact angle measurements. The effect of the experimental conditions (solvent, temperature, initiator concentration) on the surface properties of the polymer brushes was also investigated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 769–782, 2006  相似文献   

18.
We describe the preparation of surfaces with controlled surface chemistry and topology combining both surface segregation of block copolymers and “breath figures” formation. For that purpose, an amphiphilic ABC triblock copolymer, that is, poly(2,3,4,5,6‐pentafluorostyrene)‐b‐polystyrene‐b‐poly[poly(ethylene glycol) methyl ether methacrylate] (PS5F21b‐PS31b‐PPEGMA38) was mixed with high molecular weight polystyrene and spin coated in a moist atmosphere. As demonstrated by X‐ray photoelectron spectroscopy and atomic force microscopy analysis, the surfaces exhibit spherical holes with diameters between 100 and 300 nm. The holes, enriched in triblock copolymer, exhibit variable chemical composition and topography depending on the environmental conditions. The surface functionality could be reversibly modulated: whereas under humid conditions the PPEGMA hydrophilic block reorients towards the surface, annealing to dry air directs the PS5F fluorinated block to the interface. Equally, surfaces annealed to humid air changed their topography from holes to islands depending on the extent of swelling of the PPEGMA block. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2262–2271, 2009  相似文献   

19.
The in situ polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) in poly(vinylidene fluoride) (PVDF) solution was carried out to prepare hydrophilic PVDF/PPEGMA blends. Based on T g data, the system displayed some miscibility at low PPEGMA content because there were some interactions between PVDF and PPEGMA, as illustrated by Fourier transform infrared spectroscopy analysis, while the miscibility disappeared at high PPEGMA content. The β phase was the predominant crystalline phase of PVDF in the in situ blends, which was independent on PPEGMA content. However, the addition of PPEGMA could change the unit cell structure in the direction of the a-axis of β phase. The degree of crystallinity of the in situ blends calculated by wide-angle X-ray diffraction and differential scanning calorimetry displayed different tendencies with PPEGMA content. The scanning electron microscopy showed that the “spherulites” size increased with the increase in PPEGMA content, since the “spherulites” were comprised of not only crystalline PVDF but also amorphous PVDF and PPEGMA. In addition, the in situ blend had a great improvement in the hydrophilicity; specifically, its water contact angle was down to 26° when the PPEGMA content only increased to 26.9 wt.%.  相似文献   

20.
Poly(methyl methacrylate) (PMMA) brushes are grown by surface‐initiated atom transfer radical polymerization on silicon surfaces at various polymerization temperatures. Kinetic studies show that the layer thickness scales linearly with the degree of polymerization of the polymers under some conditions, indicating a constant graft density of the surface‐attached chains. At high temperatures, the layer growth is a controlled process only for short reaction times, and after a rapid increase, the film growth levels off, and a constant thickness is obtained. At lower reaction temperatures, polymers with a lower polydispersity are obtained, but at the expense of a much slower growth rate. Accordingly, intermediate temperatures yield the highest film thickness on experimentally feasible timescales. The reinitiation of these surface‐grafted PMMA chains at room temperature to either extend the chains or grow a chemically different polyglycidylmethacrylate block demonstrates the presence of active ends and the living nature of the surface‐grafted PMMA chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1758–1769, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号