首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The oxonitridoalumosilicates (so‐called sialons) MLn[Si4?xAlxOxN7?x] with M = Eu, Sr, Ba and Ln =Ho, Er, Tm, Yb were obtained by the reaction of the respective lanthanoid metal, the alkaline earth carbonates or europium carbonate, resp., AlN, “Si(NH)2” and MCl2 as a flux in a radiofrequency furnace at temperatures around 2100 °C. The compounds MLn[Si4?xAlxOxN7?x] are relevant for the investigation of substitutional effects on the materials properties due to their ability of tolerating a comparatively large phase width up to x ≈ 2.0(5). The crystal structures of the twelve compounds were refined from X‐ray single crystal data and X‐ray powder data and are found to be isotypic to the MYb[Si4N7] structure type. The compounds crystallize in space group P63mc (no. 186, hexagonal) and are made up of chains of so‐called starlike units [N[4](SiN3)4] or [N[4]((Si,Al)(O,N)3)4], respectively. These units are formed by four (Si,Al)(N/O)4 tetrahedra sharing a common central nitrogen atom. The structure refinement was performed utilizing an O/N‐distribution model according to Paulings rules, i.e. nitrogen was positioned on the four‐fold bridging site and nitrogen and oxygen were distributed equally on both of the two‐fold bridging sites, resulting in charge neutrality of the compound. The Si and Al atoms were distributed equally on their two crystallographic sites, referring to their elemental proportion in the compound, due to being poorly distinguishable by X‐ray methods. The chemical compositions of the compounds were derived from electron probe micro analyses (EPMA).  相似文献   

2.
The oxonitridoaluminosilicate chloride Pr10[Si10?xAlxO9+xN17?x]Cl was obtained by the reaction of praseodymium metal, the respective chloride, AlN and Al(OH)3 with “Si(NH)2” in a radiofrequency furnace at temperatures around 1900 °C. The crystal structure was determined by single‐crystal X‐ray diffraction (Pbam, no. 55, Z = 2,a = 10.5973(8) Å, b = 11.1687(6) Å, c = 11.6179(7) Å, R1 = 0.0337). The sialon crystallizes isotypically to the oxonitridosilicate halides Ce10[Si10O9N17]Br, Nd10[Si10O9N17]Br and Nd10[Si10O9N17]Cl, which represent a new layered structure type. The structure refinement was performed utilizing an O/N‐distribution model according to Paulings rules, i.e. nitrogen was positioned on all bridging sites and mixed O/Noccupation was assumed on the terminal sites resulting in charge neutrality of the compounds. The Si and Al atoms were refined equally distributed on their three crystallographic sites, due to their poor distinguishability by X‐ray analysis. The tetrahedra layers of the structure consist of condensed [(Si,Al)N2(O,N)2] and [(Si,Al)N3(O,N)] tetrahedra of Q2 and Q3 type. The chemical composition of the compound was derived from electron probe micro analyses (EPMA).  相似文献   

3.
Preparation, Properties, and Crystal Structure of RuSn6[(Al1/3–xSi3x/4)O4]2 (0 ≤ x ≤ 1/3) – an Oxide with isolated RuSn6 Octahedra RuSn6[(Al1/3–xSi3x/4)O4]2 is obtained by the solid state reaction of RuO2, SnO2, Sn, and Si in an Al2O3‐crucible at 1273 to 1373 K. The compound is cubic with the space group Fm 3 m (a = 9.941(1) Å, Z = 4, R1 = 0.0277, wR2 = 0.0619), a semiconductor and stable in air. Results of Mößbauer measurements as well as bond length‐bond strength calculations justify the ionic formulation Ru2+Sn62+[(Al1/3–x3+Si3x/44+)O42–]2. The central motif of the crystal structure are separated RuSn6‐octahedrea. These are interconnected by oxygen atoms, arranged tetrahedrely above the surfaces of the RuSn6‐octahedrea and partialy filled with Al and Si, respectively. Because of these features the compound can be considered as a variant of the crystal structure type of pentlandite.  相似文献   

4.
A series of the solid‐solution phosphors Lu3?x?yMnxAl5?xSixO12:yCe3+ is synthesized by solid‐state reaction. The obtained phosphors possess the garnet structure and exhibit similar excitation properties as the phosphor Lu3Al5O12:Ce3+, but with an effectively improved red component in the emission spectrum. This can be attributed to the energy transfer from Ce3+ to Mn2+. Our investigation reveals that electric dipole–quadrupole interactions dominate the energy‐transfer mechanism and that the critical distance determined by the spectral overlap method is about 9.21 Å. The color‐tunable emissions of the Lu3?x?yMnxAl5?xSixO12:yCe3+ phosphor as a function of Mn3Al2Si3O12 content are realized by continuously shifting the chromaticity coordinates from (0.354, 0.570) to (0.462, 0.494). They indicate that the obtained material may have potential application as a blue radiation‐converting phosphor for white LEDs with high‐quality white light.  相似文献   

5.
The crystal structures of MgAl2–xGaxO4 (0 ≤ x ≤ 2) spinel solid solutions (x = 0.00, 0.38, 0.76, 0.96, 1.52, 2.00) were refined using 27Al MAS NMR measurements and single crystal X‐ray diffraction technique. Site preferences of cations were investigated. The inversion parameter (i) of MgAl2O4 (i = 0.206) is slightly larger than given in previous studies. It is considered that the difference of inversion parameter is caused by not only the difference of heat treatment time but also some influence of melting with a flux. The distribution of Ga3+ is little affected by a change of the temperature from 1473 K to 973 K. The degree of order‐disorder of Mg2+ or Al3+ between the fourfold‐ and sixfold‐coordinated sites is almost constant against Ga3+ content (x) in the solid solution. A compositional variable of the Ga/(Mg + Ga) ratio in the sixfold‐coordinated site has a constant value through the whole compositional range: the ratio is not influenced by the occupancy of Al3+. The occupancy of Al3+ is independent of the occupancy of Ga3+, though it depends on the occupancy of Mg2+ according to thermal history. The local bond lengths were estimated from the refined data of solid solutions. The local bond length between specific cation and oxygen corresponds with that expected from the effective ionic radii except local Al–O bond length in the fourfold‐coordinated site and local Mg–O bond length in the sixfold‐coordinated site. The local Al–O bond length in the fourfold‐coordinated site (1.92 Å) is about 0.15 Å longer than the expected bond length. This difference is induced by a difference in site symmetry of the fourfold‐coordinated site. The nature that Al3+ in spinel structure occupies mainly the sixfold‐coordinated site arises from the character of Al3+ itself. The local Mg–O bond length in the sixfold‐coordinated site (2.03 Å) is about 0.07 Å shorter than the expected one. Difference Fourier synthesis for MgGa2O4 shows a residual electron density peak of about 0.17 e/Å3 in height on the center of (Ga0.59 Mg0.41)–O bond. This peak indicates the covalent bonding nature of Ga–O bond on the sixfold‐coordinated site in the spinel structure.  相似文献   

6.
Reaction of [GaBi3]2? with [Sm(C5Me4H)3] yielded the first protonated ternary intermetalloid clusters [Sm@Ga3?xH3?2xBi10+x]3? ( 1 ; x=0,1). The presence of the Ga? H bonds and the transfer of electrons and protons during the formation of 1 were elucidated by a combination of experimental and quantum chemical methods, thereby rationalizing the role of the solvent ethane‐1,2‐diamine as a Brønsted acid. As an organic by‐product, we observed the previously unknown octamethylfulvene ( 2 ) upon C? C coupling of (C5Me4H)?.  相似文献   

7.
IrIn7GeO8 = [IrIn6](GeO4)(InO4) and Compounds of the Solid Solution Series [IrIn6](Ge1+xIn1?4x/3O8) (0 ≤ x ≤ 0.75): First Oxides containing [IrIn6] Octahedra The low valent indiumoxides IrIn7GeO8 = [IrIn6](GeO4)(InO4) and [IrIn6](Ge1+xIn1?4x/3O8) (0 x ≤ 0.75) are formed by heating intimate mixtures of Ir, In, In2O3 and GeO2 in corundum crucibles under an atmosphere of argon (1420 K, 70 h). The compounds are black and semiconducting. X‐ray powder diffraction patterns can be indexed on the basis of a face centered cubic unit cell with lattice parameters ranging from a = 1012.3(1) pm (x = 0) to a = 1007.3(1) pm (x = 0.75). Characteristic building units in [IrIn6](Ge1+xIn1?4x/3O8) are isolated [IrIn6]9+ octahedra with short Ir‐In distances of 253.5 pm, which are linked via [GeO4]4? and [InO4]5? tetrahedra to a three dimensional framework. Starting from IrIn7GeO8 = [IrIn6](GeO4)(InO4), the isoelectronic substitution of 4 In3+ ions by 3 Ge4+ ions and one Ge‐vacancy leads to the formation of a solid solution series [IrIn6](GeO4)1+x(O4)x/3(InO4)1?4x/3, which shows a slight decrease in the cubic lattice parameter with increasing x. According to Rietveld refinements the structure of [IrIn6](GeO4)(InO4) exhibits a statistical distribution of the tetrahedrally coordinated Ge and In atoms ( , R(prof.) = 4.4 %, R(int.) = 2.5 %). The crystal and electronic structures of [IrIn6](GeO4)(InO4) are discussed on the basis of first principles electronic structure calculations.  相似文献   

8.
The title compound, Ca3ZnGeO2[Ge4O12] (tricalcium zinc germanium dioxide dodecaoxidotetragermanate), adopts a taikanite‐type structure. The tetrahedral [Ge4O12] chain geometry is very similar to that of the silicate chain of taikanite, i.e. BaSr2Mn3+2O2[Si4O12], while the major difference is found parallel to the c axis. In taikanite, Mn3+ octahedra form an infinite zigzag chain, whereas the title compound has a chain of distorted ZnO6 octahedra, which alternates with distorted GeO4 tetrahedra connected to each other via two common edges. Eightfold‐coordinated Ca2+ polyhedra and ZnO6 octahedra form a slab parallel to (001) which alternates with another slab containing the tetrahedrally coordinated Ge sites along the c axis.  相似文献   

9.
Sodium layered P2‐stacking Na0.67MnO2 materials have shown great promise for sodium‐ion batteries. However, the undesired Jahn–Teller effect of the Mn4+/Mn3+ redox couple and multiple biphasic structural transitions during charge/discharge of the materials lead to anisotropic structure expansion and rapid capacity decay. Herein, by introducing abundant Al into the transition‐metal layers to decrease the number of Mn3+, we obtain the low cost pure P2‐type Na0.67AlxMn1?xO2 (x=0.05, 0.1 and 0.2) materials with high structural stability and promising performance. The Al‐doping effect on the long/short range structural evolutions and electrochemical performances is further investigated by combining in situ synchrotron XRD and solid‐state NMR techniques. Our results reveal that Al‐doping alleviates the phase transformations thus giving rise to better cycling life, and leads to a larger spacing of Na+ layer thus producing a remarkable rate capability of 96 mAh g‐1 at 1200 mA g‐1.  相似文献   

10.
Sodium layered P2‐stacking Na0.67MnO2 materials have shown great promise for sodium‐ion batteries. However, the undesired Jahn–Teller effect of the Mn4+/Mn3+ redox couple and multiple biphasic structural transitions during charge/discharge of the materials lead to anisotropic structure expansion and rapid capacity decay. Herein, by introducing abundant Al into the transition‐metal layers to decrease the number of Mn3+, we obtain the low cost pure P2‐type Na0.67AlxMn1?xO2 (x=0.05, 0.1 and 0.2) materials with high structural stability and promising performance. The Al‐doping effect on the long/short range structural evolutions and electrochemical performances is further investigated by combining in situ synchrotron XRD and solid‐state NMR techniques. Our results reveal that Al‐doping alleviates the phase transformations thus giving rise to better cycling life, and leads to a larger spacing of Na+ layer thus producing a remarkable rate capability of 96 mAh g‐1 at 1200 mA g‐1.  相似文献   

11.
Hf1?xSixO2 gate dielectrics grown by UV‐photo‐induced chemical vapor deposition (UV‐CVD) using Hf(OBut)2(mmp)2 and tetraethoxysilane as precursors have been deposited on Si substrate. Composition dependence of the interfacial microstructure of the Hf1?xSixO2/Si gate stacks has been investigated via Fourier transform infrared spectroscopy (FTIR) systematically. It has been indicated that the physical properties of the Hf1?xSixO2 films can be effectively optimized by adjusting the silicon contents incorporated in the films. In order to evaluate its potential implementation as an alternative dielectric in future devices, detailed electrical characterization of Au/Hf1?xSixO2/Si capacitor has been performed as functions of the silicon contents and the UV‐annealing time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Although FeO42? (ferrate(IV)) is a very strong oxidant that readily oxidizes water in acidic medium, at pH 9–10 it is relatively stable (<2 % decomposition after 1 h at 298 K). However, FeO42? is readily activated by Ca2+ at pH 9–10 to generate O2. The reaction has the following rate law: d[O2]/dt=kCa[Ca2+][FeO42?]2. 18O‐labeling experiments show that both O atoms in O2 come from FeO42?. These results together with DFT calculations suggest that the function of Ca2+ is to facilitate O–O coupling between two FeO42‐ions by bridging them together. Similar activating effects are also observed with Mg2+ and Sr2+.  相似文献   

13.
A novel tetramethylammonium aluminosilicate hydrate with the approximate composition [NMe4]6[AlxSi8?xO18?x(OH)2+x] · 44H2O (x = 3–4) has been identified by powder X-ray diffraction as a component in a polyphasic solid mixture which crystallized at room temperature from an aqueous NMe4OH? Al2O3? SiO2 solution. Large crystals of the novel hydrate phase could be mechanically selected from that mixture. The crystal structure has been determined from 1 196 unique MoKα diffraction data measured at 180 K: Tetragonal crystal system, cell constants a = 16.181(4) and c = 17.450(4) Å, space group P4/mnc with Z = 2 formula units per unit cell, R = 0.072. The host-guest compound is of polyhedral clathrate type with a mixed three-dimensional, (mainly) four-connected network composed of oligomeric aluminosilicate anions [AlxSi8?xO18?x(OH)2+x]6? and H2O molecules linked via hydrogen bonds O? H …? O. The aluminosilicate anions possess a cube-shaped (double four-ring) structure. Orientationally disordered cationic guest species NMe4+ are enclosed in the large [4668] and [4151067] polyhedral voids of the host framework; the small [46] cages (i.e. the double four-ring anions) and [4356] cages are empty. The hydrate is a further member in a recently discovered series of clathrates with mixed tetrahedral networks, which provides a structure-chemical link between zeolite- and clathrate hydrate-type host-guest compounds.  相似文献   

14.
Aluminum–nitrogen six‐fold octahedral coordination, [AlN6], is unusual and has only been seen in the high‐pressure rocksalt‐type aluminum nitride or some complex compounds. Herein we report novel nitrides LnAl(Si4−x Alx)N7Oδ (Ln=La, Sm), the first inorganic compounds with [AlN6] coordination prepared via non‐high‐pressure synthesis. Structure refinements of neutron powder diffraction and single‐crystal X‐ray diffraction data show that these compounds crystallize in the hexagonal Swedenborgite structure type with P 63mc symmetry where Ln and Al atoms locate in anticuboctahedral and octahedral interstitials, respectively, between the triangular and Kagomé layers of [SiN4] tetrahedra. Solid‐state NMR data of high‐purity La‐114 powders confirm the unusual [AlN6] coordination. These compounds are the first examples of the “33‐114” sub‐type in the “114” family. The additional site for over‐stoichiometric oxygen in the structure of 114‐type compounds was also identified.  相似文献   

15.
New Representatives of the Er6[Si11N20]O Structure Type. High‐Temperature Synthesis and Single‐Crystal Structure Refinement of Ln(6+x/3)[Si(11–y)AlyN(20+x–y)]O(1–x+y) with Ln = Nd, Er, Yb, Dy and 0 ≤ x ≤ 3, 0 ≤ y ≤ 3 According to the general formula Ln(6+x/3)[Si(11–y)AlyN(20+x–y)]O(1–x+y) (0 ≤ x ≤ 3, 0 ≤ y ≤ 3) four nitridosilicates, namely Er6[Si11N20]O, Yb6.081[Si11N20.234]O0.757, Dy0.33Sm6[Si11N20]N, and Nd7[Si8Al3N20]O were synthesized in a radiofrequency furnace at temperatures between 1300 and 1650 °C. The homeotypic crystal structures of all four compounds were determined by single‐crystal X‐ray diffraction. The nitridosilicates are trigonal with the following lattice constants: Er6[Si11N20]O: a = 978.8(4) pm, c = 1058.8(3) pm; Yb6.081[Si11N20.243]O0.757: a = 974.9(1) pm, c = 1055.7(2) pm; Dy0.33Sm6[Si11N20]N: a = 989.8(1) pm, c = 1078.7(1) pm; Nd7[Si8Al3N20]O: a = 1004.25(9) pm, c = 1095.03(12) pm. The crystal structures were solved and refined in the space group P31c with Z = 2. The compounds contain three‐dimensional networks built up by corner sharing SiN4 and AlN4 tetrahedra, respectively. The Ln3+ and the “isolated” O2– ions are situated in the voids of the structures. According to Ln(6+x/3)[Si(11–y)AlyN(20+x–y)]O(1–x+y) an extension of the Er6[Si11N20]O structure type has been found.  相似文献   

16.
CuAl2F2(Si2O7) has been prepared by hydrothermal synthesis and its crystal structure was determined by single crystal X‐ray diffraction: space group Pnma, a = 8.8697(9), b = 14.084(2), c = 4.7553(5) Å, wR2 = 0.056, R = 0.022. Cu2+ shows elongated square pyramidal coordination. Edge‐ and corner‐sharing [AlO4F2] octahedra with fluorine atoms in cis position form layers parallel to the ac plane. Along b these layers are linked by Si2O7 groups to form a three‐dimensional framework [Al2F2(Si2O7]2–. In addition, the [CuO5] pyramides connect two Al octahedra of neighbouring layers. The crystal structure is discussed as a derivative from topaz structure. The modular (or polysomatic) approach is used for this purpose, and for modelling hypothetical related compounds.  相似文献   

17.
AlIII Phthalocyanines: Synthesis, Properties, and Crystal Structure of Tetra(n-butyl)-ammonium-trans-di(nitrito(O))phthalocyaninato(2?)aluminate(III) [Al(Cl)Pc2?] reacts with excess (nBu4N)NO2 in dimethylformamide yielding less soluble blue tetra(n-butyl)ammonium-trans-di(nitrito(O))phthalocyaninato(2?)aluminate(III), (nBu4N)trans[Al(ONO)2Pc2?], which crystallizes in the monoclinic space group C2/c (No. 15) with Z = 4. The Al atom is in the special position 4 d in the center of the Pc2? ligand and the two nitrit ions are monodentate O-coordinated in a mutually trans arrangement to the Al atom. The Al? O and average Al? Niso bond distances are 1.927(2) and 1.956 Å, respectively. The geometric data of the coordinated nitrite ion are: d(N? O) = 1.277(4) Å; d(N? O) = 1.221(4) Å; ?(O? N? O) = 114.3(3)°; ?(Al? O? N) = 121.3(2)°. The non-bonded O atoms are trans to the Al atom. The Pc2? ligand is slightly ruffled. The UV-VIS-NIR spectra and the vibrational spectra are discussed.  相似文献   

18.
The ion conductors Li4+xAlxSi1‐xO4‐yLi3PO4 (x = 0 to 0.5, y = 0 to 0.6) were prepared by the Sol‐Gel method. The powder and sintered samples were characterized by DTA‐TG, XRD, SEM, and AC impedance techniques. The conductivity and sinterability increased when y increased from 0 to 0.4 in the Li4+xAlxSi1‐xO4‐yLi3PO4. The particle size of the powder samples is about 0.13 μm. The maximum conductivity at 20 °C is 3.128 × 10?5s cm?1 for Li4.4Al0.4Si0.6O4‐0.4 Li3PO4.  相似文献   

19.
[{μ‐Cy8Si8O13}2Ca(DME)Ca(THF)2] ( 2 ), the first metallasilsesquioxane derivative of a heavier alkaline earth metal, has been prepared by a reaction of Cy7Si7O9(OH)3 ( 1 ) with metallic Ca in liquid ammonia / THF followed by recrystallization from DME. In the course of the reaction ligand rearrangement under formation of the (Cy8Si8O13)? dianion takes place. In the dinuclear calcium complex 2 the anionic silsesquioxane cages act as bridging ligands. The Ca2+ ions are unsymmetrically coordinated by THF and DME molecules.  相似文献   

20.
The crystal structure of sodium pyrosilicate (Na6Si2O7) was solved from single crystal diffraction data and refined to an R index of 0.051 for 17034 independent reflections. The compound is triclinic with space group P (a = 5.8007(8) Å, b = 11.5811(15) Å, c = 23.157(3) Å, α = 89.709(10)°, β = 88.915(11)°, γ = 89.004(11)°, V = 1555.1(4) Å3, Z = 8, Dx = 2.615 g · cm–3, μ(Mo‐Kα) = 7.94 cm–1). A characteristic feature of the crystals is a twinning by reticular pseudo‐merohedry, which simulates a much larger monoclinic C centered lattice (V′ = 6220 Å3, Z = 32). The twin element corresponds to a twofold rotation axis running parallel to the [0 direction of the triclinic cell. The compound belongs to the group of sorosilicates, i.e. it is based on [Si2O7] groups, which are arranged in layers parallel to (100). Charge compensation within the structure is accomplished by monovalent sodium cations distributed among 24 crystallographically independent positions. They are coordinated by four to six nearest oxygen neighbors. Most of the coordination polyhedra can be approximately described as distorted tetrahedra or tetragonal pyramids. An alternative understanding of Na6Si2O7 can be gained if the tetrahedrally coordinated sodium atoms are considered for the construction of a framework. Actually, each four of the dimers within a single slice are linked by a more or less distorted [NaO4] tetrahedron. The resulting structural motif is similar to the one that can be observed in melilites, where linkage between the T2O7 (T: Al, Si) moieties is provided by [MgO4]‐ (as in akermanite, Ca2Mg[Si2O7]) or [AlO4] tetrahedra (as in gehlenite, Ca2Al[AlSiO7]). By sharing common edges, the [NaO4] tetrahedra in Na6Si2O7 are forming columns running parallel to 25 . The resulting framework contains tunnels in which the more irregularly coordinated sodium cations are incorporated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号