首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A new styrene derivative having D ‐mannaric moiety, Np‐vinylbenzyl‐D ‐mannaramic acid (VB‐D ‐ManaH, 8 ) was synthesized though the ring‐opening reaction of D ‐mannaro‐1,4:6,3‐dilactone (D ‐MDL) with p‐vinylbenzylamine. VB‐D ‐ManaH was copolymerized with acrylamide (AAm) to give novel polymers having D ‐mannaric moiety in the pendants, P(VB‐D ‐ManaH‐co‐AAm), 10 . The resulting glycomonomer and polymer ( 8 and 10 ) bearing D ‐mannaric pendants were found to inhibit the β‐glucuronidase activity, although the inhibition ability of the corresponding saccharodilactone (D ‐MDL) was known to be low. Additionally, the inhibition ability of P(VB‐D ‐ManaH‐co‐AAm), 10 , was almost the same as that of the glycopolymer having D ‐glucaric pendants, P(VB‐6‐D ‐GlcaH‐co‐AAm), 1 , which was one of the most effective inhibitors for β‐glucuronidase, reported in our previous work. Thus, 10 and 8 may be the first D ‐mannaric strong inhibitors to the β‐glucuronidase activity. The Lineweaver–Burk plot suggested that the inhibition mechanisms of 10 and 8 were more complicated than in the case of the competitive and uncompetitive inhibition of Np‐(vinylbenzyl)‐6‐D ‐glucaramic ( 11 ) and Np‐(vinylbenzyl)‐1‐D ‐glucaramic acids ( 12 ), respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2032–2042, 2009  相似文献   

2.
Two kinds of novel vinyl monomers having D ‐glucaric moieties leading to a new type of glycopolymeric inhibitors of β‐glucuronidase, Np‐vinylbenzyl‐6‐D ‐glucaramide (6 ) and potassium Np‐vinylbenzyl‐6‐D ‐glucaramid‐1‐ate (8 ), were synthesized by the reaction of D ‐glucaro‐6,3‐lactone (3 ) with p‐vinylbenzylamine (5 ) with no catalyst, and the subsequent treatment of the reaction mixture with acetic anhydride and potassium hydroxide aqueous solution, respectively. The radical copolymerization of 8 with acrylamide in various feed ratios at 60°C in 0.1 N potassium chloride aqueous solution gave water‐soluble copolymers (9 ) composed of a synthetic polymeric main chain and many pendant D ‐glucaric chains. The resulting glycopolymers (9 ) were found to inhibit the activity of β‐glucuronidase strongly through a model reaction with p‐nitrophenyl β‐D ‐glucuronide (10 ) in acetic buffer solution (pH 4.7). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 303–312, 1999  相似文献   

3.
We synthesized and carried out the conformational analysis of several hybrid dipeptides consisting of an α‐amino acid attached to a quaternary glyco‐β‐amino acid. In particular, we combined a S‐glycosylated β2,2‐amino acid and two different types of α‐amino acid, namely, aliphatic (alanine) and aromatic (phenylalanine and tryptophan) in the sequence of hybrid α/β‐dipeptides. The key step in the synthesis involved the ring‐opening reaction of a chiral cyclic sulfamidate, inserted in the peptidic sequence, with a sulfur‐containing nucleophile by using 1‐thio‐β‐D ‐glucopyranose derivatives. This reaction of glycosylation occurred with inversion of configuration at the quaternary center. The conformational behavior in aqueous solution of the peptide backbone and the glycosidic linkage for all synthesized hybrid glycopeptides was analyzed by using a protocol that combined NMR experiments and molecular dynamics with time‐averaged restraints (MD‐tar). Interestingly, the presence of the sulfur heteroatom at the quaternary center of the β‐amino acid induced θ torsional angles close to 180° (anti). Notably, this value changed to 60° (gauche) when the peptidic sequence displayed aromatic α‐amino acids due to the presence of CH–π interactions between the phenyl or indole ring and the methyl groups of the β‐amino acid unit.  相似文献   

4.
α‐Methyl glutamic acid (L ‐L )‐, (L ‐D )‐, (D ‐L )‐, and (D ‐D )‐γ‐dimers were synthesized from L ‐ and D ‐glutamic acids, and the obtained dimers were subjected to polycondensation with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and 1‐hydroxybenzotriazole hydrate as condensation reagents. Poly‐γ‐glutamic acid (γ‐PGA) methyl ester with the number‐average molecular weights of 5000∼20,000 were obtained by polycondensation in N,N‐dimethylformamide in 44∼91% yields. The polycondensation of (L ‐L )‐ and (D ‐D )‐dimers afforded the polymers with much larger |[α]D | compared with the corresponding dimers. The polymer could be transformed into γ‐PGA by alkaline hydrolysis or transesterification into α‐benzyl ester followed by hydrogenation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 732–741, 2001  相似文献   

5.
An amphiphilic block copolymer, poly(ethylene glycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate) [PEG‐b‐P(LA‐co‐MBC)], was synthesized in bulk by the ring‐opening polymerization of L ‐lactide with 2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate (MBC) in the presence of poly(ethylene glycol) as a macroinitiator with diethyl zinc as a catalyst. The subsequent catalytic hydrogenation of PEG‐b‐P(LA‐co‐MBC) with palladium hydroxide on activated charcoal (20%) as a catalyst was carried out to obtain the corresponding linear copolymer poly(ethyleneglycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐carboxyl‐propylenecarbonate) [PEG‐b‐P(LA‐co‐MCC)] with pendant carboxyl groups. DSC analysis indicated that the glass‐transition temperature (Tg) of PEG‐b‐P(LA‐co‐MBC) decreased with increasing MBC content in the copolymer, and Tg of PEG‐b‐P(LA‐co‐MCC) was higher than that of the corresponding PEG‐b‐P(LA‐co‐MBC). The in vitro degradation rate of PEG‐b‐P(LA‐co‐MCC) in the presence of proteinase K was faster than that of PEG‐b‐P(LA‐co‐MBC), and the cytotoxicity of PEG‐b‐P(LA‐co‐MCC) to chondrocytes from human fetal arthrosis was lower than that of poly(L ‐lactide). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4771–4780, 2005  相似文献   

6.
2-脱氧-烟酰胺基-β-D-氨基葡萄糖的合成和表征   总被引:1,自引:0,他引:1  
A new nicotinic acid derivative,2-deoxy-2-nicotinoylamido-β-D-glucopyranose, was synthesized with β-configuration exclusively. The structure and properties of the product were characterized by ^1H NMR, PT-IR, MS, DSC and polarimeter. The details of ^1H NMR spectrum and the mass spectrum proved that there are a great amount of hydrogen bonds in the product.  相似文献   

7.
Temperature sensitive poly{N‐[3‐(dimethylaminopropyl)]methacrylamide‐co‐acrylamide} [P(DMAPMA‐co‐AAm)] hydrogels were prepared by the free‐radical crosslinking copolymerization of corresponding monomers in water with N,N‐methylenebisacrylamide as the crosslinker, ammonium persulfate as the initiator, and N,N,N′,N′‐tetramethylethylenediamine as the activator. The swelling equilibrium of the P(DMAPMA‐co‐AAm) hydrogels was investigated as a function of temperature in aqueous solutions of the anionic surfactant sodium dodecyl sulfate and the cationic surfactant dodecyltrimethylammonium bromide. In pure water, regardless of the amount of N,N‐methylenebisacrylamide, the P(DMAPMA‐co‐AAm) hydrogels showed a discontinuous phase transition between 30 and 36 °C. However, the transition temperature changed from discontinuous to continuous with the addition of surfactants; this was ascribed to the conversion of nonionic P(DMAPMA‐co‐AAm) hydrogels into polyelectrolyte hydrogels due to the binding of surfactants through hydrophobic interactions. Additionally, the concentrations of free sodium dodecyl sulfate and dodecyltrimethylammonium bromide ions were measured at different temperatures by conductometry, and it was found that the electric conductivity of the P(DMAPMA‐co‐AAm)–surfactant systems depended strongly on the swelling ratio; most notably, it changed drastically near the phase‐transition temperature of the P(DMAPMA‐co‐AAm) hydrogel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1645–1652, 2006  相似文献   

8.
The N‐carboxyanhydrides (NCAs) of sarcosine (Sar), D ,L ‐leucine (D ,L ‐Leu), D ,L ‐phenylalanine (D ,L ‐Phe), and L ‐alanine (L ‐Ala) were polymerized in dioxane. Imidazole served as initiator and the NCA/initiator ratio was varied from 1/1 to 40/1. The isolated polypeptides were characterized by 1H NMR spectroscopy, by MALDI‐TOF mass spectrometry, by viscosity measurements, and by SEC measurements in the case of poly(sarcosine). Cyclic oligopeptides were found in all reaction products and in the case of polySar, poly(D ,L ‐Leu), and poly(D ,L ‐Phe) the cycles were the main products. In the case of poly(L ‐Ala), rapid precipitation of β‐sheet lamellaes prevented efficient cyclizations and stabilized imidazolide endgroups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5690–5698, 2005  相似文献   

9.
We have synthesized poly(ε‐caprolactone‐co‐tert‐butyl glycidyl ether) (CL‐co‐BGE) statistical copolymers using 1‐tert‐butyl‐4,4,4‐tris(dimethylamino)‐2,2‐bis [tris(dimethylamino)phophoranylidenamino]‐2Λ5,4Λ5‐catenadi(phosphazene) (t‐BuP4) as the catalyst. The hydrolysis of the resulting polymers yields amphiphilic poly(ε‐caprolactone‐co‐glycidol) (CL‐co‐GD) copolymers. By use of the quartz crystal microbalance with dissipation (QCM‐D), we have investigated the enzymatic degradation of the copolymers. It is shown that the degradation rate increases with the content of hydrophilic (GD) units. (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide) (MTT) assay experiments demonstrate that the CL‐co‐GD copolymers have low cytotoxicity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 846–853  相似文献   

10.
A new styrene derivative having an L -gulonic moiety, N-(p-vinylbenzyl)-6-L -gulonamide (VB-6-Glco, 3) was synthesized from L -gulono-1,4-lactone and p-vinylbenzylamine. The styrene derivative (3) was subjected to the radical homopolymerization and copolymerization with acrylamide and acrylic acid. The hydrolysis of p-nitrophenyl β-D -glucuronide with β-glucuronidase was scarcely inhibited in the presence of the glycopolymer prepared from 3 and acrylamide (P(VB-6-Glco-co-AAm), 4), whereas the glycopolymer prepared from 3 and acrylic acid (P(VB-6-Glco-co-AAK), 5) was found to suppress the enzyme activity strongly as well as a polystyrene derivative having pendant D -glucaric moieties (P(VB-6-GlcaH-co-AAm), 6). From the kinetic analysis of the hydrolysis, the glycopolymers 6 and 5 were postulated to inhibit the enzyme competitively and uncompetitively, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2773–2779, 1999  相似文献   

11.
A gene of α‐L ‐arabinofuranosidase (Abf) from Trichoderma koningii G‐39 was successfully expressed in Pichia pastoris. The recombinant enzyme was purified to > 90% homogeneity by a cation‐exchanged chromatography. The purified enzyme exhibits both α‐L ‐arabinofuranosidase and β‐D ‐xylosidase (Xyl) activities with p‐nitrophenyl‐α‐L ‐arabionfuranoside (pNPAF) and 2,4‐dinitrophenyl‐β‐D ‐xylopyanoside (2,4‐DNPX) as substrate, respectively. The stability and the catalytic feature of the bifunctional enzyme were characterized. The enzyme was stable for at least 2 h at pH values between 2 and 8.3 at room temperature when assayed for Abf and Xyl activities. Enzyme activity decreased dramatically when the pH exceeded 9.5 or dropped below 1.5. The enzyme lost 35% of Abf activity after incubation at 55 °C for 2 h, but retained 95% of Xyl activity, with 2,4‐DNXP as substrate, under the same conditions. Further investigation of the active site topology of both enzymatic functions was performed with the inhibition study of enzyme activities. The results revealed that methyl‐α‐L ‐arabinofuranoside inhibition is noncompetitive towards 2,4‐DNPX as substrate but competitive towards pNPAF. Based on the thermal stability and the inhibition studies, we suggest that the enzymatic reactions of Abf and Xyl are performed at distinct catalytic sites. The recombinant enzyme possesses both the retaining transarabinofuranosyl and transxylopyranosyl activities, indicating both enzymatic reactions proceed through a two‐step, double displacement mechanism.  相似文献   

12.
A new anhydro disaccharide monomer, 1,6‐anhydro‐2,3‐di‐o‐benzyl‐4‐o‐(2′,3′,4′,6′‐tetra‐o‐benzyl‐β‐D ‐galactopyranosyl)‐β‐D ‐glucopyranose (benzylated 1,6‐anhydro lactose (LSHBE)), was synthesized from D ‐lactose to investigate the polymerizability and biological activities of the resulting branched polysaccharides. The ring‐opening polymerization of LSHBE was carried out with phosphorus pentafluoride as a catalyst under high vacuum to give a stereoregular benzylated (1 → 6)‐α‐D ‐lactopyranan. The molecular weights of poly(LSHBE)s increased with an increase in the amount of CH2Cl2 solvent, and polymerization temperatures were affected in both molecular weights and yields of the polymers. The copolymerization of LSHBE with benzylated 1,6‐anhydro‐β‐D ‐glucopyranose (LGTBE) gave the corresponding copolysacchrides having different proportions of lactose and glucose units in good yields. After debenzylation to recover hydroxyl groups and then sulfation, sulfated homopoly(lactose)s and copoly(lactose and glucose)s were obtained. Sulfated homopoly(lactose)s had moderate anti‐HIV (EC50 = 5.9 and 1.3 μg/mL) and blood anticoagulant activities (AA = 18 and 13 unit/mg), respectively. Sulfated copoly(lactose and glucose) having 15 mol % lactose units gave high anti‐HIV and blood anticoagulant activities of 0.3 μg/mL and 54 unit/mg, respectively. These biological results suggest that the distance between branched units on the main chain plays an important role in the anti‐HIV and blood anticoagulant activities. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 913–924, 2009  相似文献   

13.
D ,L ‐3‐Methylglycolide (MG) was synthesized via two step reactions with a good yield (42%). It was successfully polymerized in bulk with stannous octoate as a catalyst at 110 °C. The effects of the polymerization time and catalyst concentration on the molecular weight and monomer conversion were studied. Poly(D ,L ‐lactic acid‐co‐glycolic acid) (D ,L ‐PLGA50; 50/50 mol/mol) copolymers were successfully synthesized from the homopolymerization of MG with high polymerization rates and high monomer conversions under moderate polymerization conditions. 1H NMR spectroscopy indicated that the bulk ring‐opening polymerization of MG conformed to the coordination–insertion mechanism. 13C NMR spectra of D ,L ‐PLGA50 copolymers obtained under different experimental conditions revealed that the copolymers had alternating structures of lactyl and glycolyl. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4179–4184, 2000  相似文献   

14.
In this work, we report a series of poly(itaconic acid‐co‐acrylic acid‐co‐acrylamide) (poly(IA‐co‐AAc‐co‐AAm)) hydrogels via frontal polymerization (FP). FP starts on the top of the reaction mixture with aid of heating provided from soldering iron gun. Once polymerization initiated, no further energy is required to complete the process. The influences of IA/AAc weight ratios on frontal velocities, temperatures, and conversions on the reaction time are thoroughly investigated and discussed where the amount of AAm monomer remains constant. Fourier transform‐infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM), dynamic mechanical analysis, and the swelling measurement are applied to characterize the as‐synthesized poly(IA‐co‐AAc‐co‐AAm) hydrogels. Interestingly, the swelling ratios of the hydrogels are changed with different IA/AAc contents, and the maximum swelling ratios are ~4439% in water. SEM images describe highly porous morphologies and explain good swelling capabilities. Moreover, the poly(IA‐co‐AAc‐co‐AAm) hydrogels exhibit superior pH‐responsive ability. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2214–2221  相似文献   

15.
The title compound, C13H24O11·4H2O, (I), crystallized from water, has an internal glycosidic linkage conformation having ϕ′ (O5Gal—C1Gal—O1Gal—C4All) = −96.40 (12)° and ψ′ (C1Gal—O1Gal—C4All—C5All) = −160.93 (10)°, where ring‐atom numbering conforms to the convention in which C1 denotes the anomeric C atom, C5 the ring atom bearing the exocyclic hydroxymethyl group, and C6 the exocyclic hydroxymethyl (CH2OH) C atom in the βGalp and βAllp residues. Internal linkage conformations in the crystal structures of the structurally related disaccharides methyl β‐lactoside [methyl β‐d ‐galactopyranosyl‐(1→4)‐β‐d ‐glucopyranoside] methanol solvate [Stenutz, Shang & Serianni (1999). Acta Cryst. C 55 , 1719–1721], (II), and methyl β‐cellobioside [methyl β‐d ‐glucopyranosyl‐(1→4)‐β‐d ‐glucopyranoside] methanol solvate [Ham & Williams (1970). Acta Cryst. B 26 , 1373–1383], (III), are characterized by ϕ′ = −88.4 (2)° and ψ′ = −161.3 (2)°, and ϕ′ = −91.1° and ψ′ = −160.7°, respectively. Inter‐residue hydrogen bonding is observed between O3Glc and O5Gal/Glc in the crystal structures of (II) and (III), suggesting a role in determining their preferred linkage conformations. An analogous inter‐residue hydrogen bond does not exist in (I) due to the axial orientation of O3All, yet its internal linkage conformation is very similar to those of (II) and (III).  相似文献   

16.
pH‐responsive methoxy poly(ethylene glycol)‐b‐poly(ε‐caprolactone) bearing pendant carboxyl groups mPEG‐b‐P(2‐CCL‐co‐6‐CCL) was synthesized based on our newly monomer benzyloxycarbonylmethly functionalized ε‐caprolactone. Their structure was confirmed by 1H NMR, 13C NMR, and Fourier transform infrared spectrum spectra. In addition, SEC results indicated that the copolymers had a relatively narrow polydispersity. WXRD and DSC demonstrated that the introduction of carboxymethyl groups had significant effect on the crystallinity of the copolymers. Furthermore, the solution behavior of mPEG‐b‐P(2‐CCL‐co‐6‐CCL) has been studied by various methods. The results indicated that mPEG‐b‐P(2‐CCL‐co‐6‐CCL) had a rich pH‐responsive behavior and the micelles could be formed by pH induction, and the mPEG‐b‐P(2‐CCL‐co‐6‐CCL) could existed as unimers, micelles or large aggregates in different pH range accordingly. The mechanism of which was supposed to depend on the counteraction between the hydrophobic interaction from PCL and the ionization of the carboxyl groups along the polymer chain. Moreover, the mPEG‐b‐P(2‐CCL‐co‐6‐CCL) copolymers displayed good biocompatibility according to the preliminary cytotoxicity study. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 188–199  相似文献   

17.
β‐Hydroxy‐α‐amino acids figure prominently as chiral building blocks in chemical synthesis and serve as precursors to numerous important medicines. Reported herein is a method for the synthesis of β‐hydroxy‐α‐amino acid derivatives by aldolization of pseudoephenamine glycinamide, which can be prepared from pseudoephenamine in a one‐flask protocol. Enolization of (R,R)‐ or (S,S)‐pseudoephenamine glycinamide with lithium hexamethyldisilazide in the presence of LiCl followed by addition of an aldehyde or ketone substrate affords aldol addition products that are stereochemically homologous with L ‐ or D ‐threonine, respectively. These products, which are typically solids, can be obtained in stereoisomerically pure form in yields of 55–98 %, and are readily transformed into β‐hydroxy‐α‐amino acids by mild hydrolysis or into 2‐amino‐1,3‐diols by reduction with sodium borohydride. This new chemistry greatly facilitates the construction of novel antibiotics of several different classes.  相似文献   

18.
The radical polymerization of three monomers bearing nucleobases 1‐(4‐vinylbenzyl)thymine (VBT), 1‐(4‐vinylbenzyl)uracil (VBU) and 9‐(4‐vinylbenzyl)adenine (VBA) was investigated. The corresponding homopolymers could be prepared in high yields via conventional radical polymerization. However, the resulting polymers were found to be only soluble in a few polar solvents. On the other hand, copolymers of dodecyl methacrylate (DMA) with either VBT or VBA could be prepared via both free radical polymerization and atom transfer radical polymerization and could be dissolved in a large variety of organic solvents. Moreover, the formed complementary copolymers P(VBT‐co‐DMA) and P(VBA‐co‐DMA) were found to self‐assemble in dilute solutions in dioxane or chloroform via base recognition, as evidenced by a significant hypochromicity effect in UV spectroscopy. Nevertheless, at higher concentrations in chloroform, both dynamic light scattering and optical microscopy indicate that P(VBT‐co‐DMA), P(VBA‐co‐DMA), or P(VBT‐co‐DMA)/P(VBA‐co‐DMA) mixtures spontaneously self‐assemble into micron size spherical aggregates. 1H NMR and FTIR studies confirmed that the self‐assembly process is driven in all cases via H‐bond formation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4805–4818, 2005  相似文献   

19.
The known glucaro‐1,5‐lactam 8 , its diastereoisomers 9 – 11 , and the tetrahydrotetrazolopyridine‐5‐carboxylates 12 – 14 were synthesised as potential inhibitors of β‐D ‐glucuronidases and α‐L ‐iduronidases. The known 2,3‐di‐O‐benzyl‐4,6‐O‐benzylidene‐D ‐galactose ( 16 ) was transformed into the D ‐galactaro‐ and L ‐altraro‐1,5‐lactams 9 and 11 via the galactono‐1,5‐lactam 21 in twelve steps and in an overall yield of 13 and 2%, respectively. A divergent strategy, starting from the known tartaric anhydride 41 , led to the D ‐glucaro‐1,5‐lactam 8 , D ‐galactaro‐1,5‐lactam 9 , L ‐idaro‐1,5‐lactam 10 , and L ‐altraro‐1,5‐lactam 11 in ten steps and in an overall yield of 4–20%. The anhydride 41 was transformed into the L ‐threuronate 46 . Olefination of 46 to the (E)‐ or (Z)‐alkene 47 or 48 followed by reagent‐ or substrate‐controlled dihydroxylation, lactonisation, azidation, reduction, and deprotection led to the lactams 8 – 11 . The tetrazoles 12 – 14 were prepared in an overall yield of 61–81% from the lactams 54, 28 , and 67 , respectively, by treatment with Tf2O and NaN3, followed by saponification, esterification, and hydrogenolysis. The lactams 8 – 11 and 40 and the tetrazoles 12 – 14 are medium‐to‐strong inhibitors of β‐D ‐glucuronidase from bovine liver. Only the L ‐ido‐configured lactam 10 (Ki = 94 μM ) and the tetrazole 14 (Ki = 1.3 mM ) inhibit human α‐L ‐iduronidase.  相似文献   

20.
Novel biomimetic composite was prepared by the reaction of collagen and poly(γ‐benzyl L ‐glutamate)‐co‐poly(glutamic acid) (PBLG‐co‐PGA), which were crosslinked by non‐toxic crosslinking reagents 1‐ethyl‐(dimethylaminopropyl) carbodiimide (EDC) and N‐hydroxysuccinimide (NHS). The composite was characterized by FTIR and DSC. FTIR results confirmed that the collagen in the composite was successfully crosslinked with PBLG‐co‐PGA. DSC results showed that the composites possessed higher shrinkage temperature and higher thermal stability than the collagen. The water absorption test showed that the water absorbency of the composites increased with the increase in PBLG‐co‐PGA content in the composite. The studies of collagenase degradation and the tensile strength showed that the biostability and the tensile strength of the composites were significantly improved in comparison with that of the collagen. According to the investigations of cell adherent ratio and cell proliferation in vitro, the composite possessed good biocompatibility. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号